[发明专利]零平行语料多模态神经机器翻译方法有效
申请号: | 201910550612.0 | 申请日: | 2019-06-24 |
公开(公告)号: | CN110245364B | 公开(公告)日: | 2022-10-28 |
发明(设计)人: | 陈恩红;刘淇;王怡君;魏天心 | 申请(专利权)人: | 中国科学技术大学 |
主分类号: | G06F40/58 | 分类号: | G06F40/58;G06N3/04;G06N3/08 |
代理公司: | 北京凯特来知识产权代理有限公司 11260 | 代理人: | 郑立明;郑哲 |
地址: | 230026 安*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种零平行语料多模态神经机器翻译方法,包括:利用带有相应图片信息的源语言和目标语言单语语料,对预先构建的神经机器翻译模型进行预训练;使用预训练的神经机器翻译模型将源语言中的句子翻译为目标语言的句子,根据翻译得到的句子与对应图片之间的内在联系计算句子级别的奖励值,并以最大化期望的总的奖励值为优化目标,采用策略梯度的强化学习方法对预训练的神经机器翻译模型参数进行更新,从而得到训练好的神经机器翻译模型;使用训练好的神经机器翻译模型对给定的源语言句子进行翻译。该方法通过利用图片与文字的内在联系,可以建立零资源语言对的神经机器翻译模型。 | ||
搜索关键词: | 平行 语料 多模态 神经 机器翻译 方法 | ||
【主权项】:
1.一种零平行语料多模态神经机器翻译方法,其特征在于,包括:利用带有相应图片信息的源语言和目标语言单语语料,对预先构建的神经机器翻译模型进行预训练;使用预训练的神经机器翻译模型将源语言中的句子翻译为目标语言的句子,根据翻译得到的句子与对应图片之间的内在联系计算句子级别的奖励值,并以最大化期望的总的奖励值为优化目标,采用策略梯度的强化学习方法对预训练的神经机器翻译模型参数进行更新,从而得到训练好的神经机器翻译模型;使用训练好的神经机器翻译模型对给定的源语言句子进行翻译。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学技术大学,未经中国科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910550612.0/,转载请声明来源钻瓜专利网。