[发明专利]一种基于自学习滑动时间窗口的网络支付欺诈检测方法有效
申请号: | 201811516440.7 | 申请日: | 2018-12-12 |
公开(公告)号: | CN109767225B | 公开(公告)日: | 2022-12-27 |
发明(设计)人: | 王成;王昌琪 | 申请(专利权)人: | 同济大学 |
主分类号: | G06Q20/40 | 分类号: | G06Q20/40;G06K9/62 |
代理公司: | 上海伯瑞杰知识产权代理有限公司 31227 | 代理人: | 孟旭彤 |
地址: | 200000 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于自学习滑动时间窗口的网络支付欺诈检测方法,目的为了寻找更为有效的网络支付欺诈检测的实现方案,其包括如下步骤:获取实时检测的某个用户新来的一笔交易记录,并基于交易记录和预置的滑动时间窗口提取不依赖于滑动时间窗口的特征和依赖于滑动时间窗口的特征;将不依赖于滑动时间窗口的特征和依赖于滑动时间窗口的特征输入到训练完毕的随机森林分类器模型中,得到并返回交易记录存在欺诈可能性的概率。本发明利用强化学习中的学习自动机对滑动时间窗口大小进行动态学习和调整,解决传统欺诈检测系统存在滞后性的弊病。 | ||
搜索关键词: | 一种 基于 自学习 滑动 时间 窗口 网络 支付 欺诈 检测 方法 | ||
【主权项】:
1.一种基于自学习滑动时间窗口的网络支付欺诈检测方法,其特征在于,所述基于自学习滑动时间窗口的网络支付欺诈检测方法包括如下步骤:获取实时检测的某个用户新来的一笔交易记录,并基于所述交易记录和预置的滑动时间窗口提取不依赖于所述滑动时间窗口的特征和依赖于所述滑动时间窗口的特征,其中,所述不依赖于滑动时间窗口的特征包括交易的验签方式、当前交易是否使用该用户的常用IP地址、交易金额是否超过金额限额、交易金额是否超过交易前账户余额、两笔相邻交易的时间间隔、两笔相邻交易的交易金额差;所述依赖于滑动时间窗口的特征包括滑动时间窗口内用户的交易次数、滑动时间窗口内所有交易金额的平均值、滑动时间窗口内所有交易金额的方差值、滑动时间窗口内所有交易金额的累积值、滑动时间窗口内相邻交易金额差的均值、滑动时间窗口内相邻交易金额差的方差值、滑动时间窗口内相邻交易时间间隔的均值、滑动时间窗口内相邻交易时间间隔的方差值;将所述不依赖于滑动时间窗口的特征和所述依赖于滑动时间窗口的特征输入到训练完毕的随机森林分类器模型中,得到并返回所述交易记录存在欺诈可能性的概率。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于同济大学,未经同济大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811516440.7/,转载请声明来源钻瓜专利网。