[发明专利]一种支持不规则时间间隔的虚拟机工作负载预测方法有效
申请号: | 201811354400.7 | 申请日: | 2018-11-14 |
公开(公告)号: | CN109542585B | 公开(公告)日: | 2020-06-16 |
发明(设计)人: | 郭伟;宁雅頔;鹿旭东;葛伟;崔立真 | 申请(专利权)人: | 山东大学 |
主分类号: | G06F9/455 | 分类号: | G06F9/455;G06N3/04;G06N3/08 |
代理公司: | 济南圣达知识产权代理有限公司 37221 | 代理人: | 黄海丽 |
地址: | 250101 山东*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种支持不规则时间间隔的虚拟机工作负载预测方法。对虚拟机工作负载历史数据进行预处理;构建支持不规则时间间隔数据处理的N‑LSTM模型,将预处理得到的数据输入到N‑LSTM模型中对N‑LSTM模型进行训练;得到训练好的N‑LSTM模型;对虚拟机工作负载待测数据进行预处理,将预处理得到的待测数据输入到已经训练好的N‑LSTM模型中,N‑LSTM模型输出虚拟机工作负载预测结果。本发明实现了准确使用历史数据中的时间间隔信息,设计了一个能将不规则的时间间隔与请求记录有效结合进行学习的深度学习模型,以得到最优的预测结果。 | ||
搜索关键词: | 一种 支持 不规则 时间 间隔 虚拟机 工作 负载 预测 方法 | ||
【主权项】:
1.一种支持不规则时间间隔的虚拟机工作负载预测方法,其特征是,包括:对虚拟机工作负载历史数据进行预处理;构建支持不规则时间间隔数据处理的N‑LSTM模型,将预处理得到的数据输入到N‑LSTM模型中对N‑LSTM模型进行训练;得到训练好的N‑LSTM模型;对虚拟机工作负载待测数据进行预处理,将预处理得到的待测数据输入到已经训练好的N‑LSTM模型中,N‑LSTM模型输出虚拟机工作负载预测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811354400.7/,转载请声明来源钻瓜专利网。