[发明专利]基于改进混合增量动态贝叶斯网络的视觉注意力检测方法有效

专利信息
申请号: 201811057186.9 申请日: 2018-09-11
公开(公告)号: CN109711239B 公开(公告)日: 2023-04-07
发明(设计)人: 罗元;陈雪峰;张毅;陈旭;刘星遥 申请(专利权)人: 重庆邮电大学
主分类号: G06V40/18 分类号: G06V40/18;G06V10/84;G06V10/766
代理公司: 重庆市恒信知识产权代理有限公司 50102 代理人: 刘小红;陈栋梁
地址: 400065 重*** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明请求保护一种基于改进混合增量动态贝叶斯网络的视觉注意力检测方法,该方法融合头部、视线以及预测子模型来对其进行综合估计;在传统人眼模型的基础上对视线检测子模型进行改进,以提升识别速率增加对于不同测试者进行检测时的鲁棒性;针对极端姿态和动态场景下导致的数据缺失问题,提出了预测子模型,利用高斯协方差来度量两个时刻采样图片的相关性,从而有效改善当前时刻的误识别,降低了识别误差。其次就相关子模型进行描述,利用条件概率分别建立贝叶斯回归模型;并利用增量学习的方法来对模型的参数进行动态更新,用以提升模型整体对于新输入数据的适应性。
搜索关键词: 基于 改进 混合 增量 动态 贝叶斯 网络 视觉 注意力 检测 方法
【主权项】:
1.一种基于改进的混合增量动态贝叶斯网络的视觉注意力检测方法,其特征在于,包括以下步骤:S1,实时对人脸进行定位及预处理,并提取人脸、人眼关键特征点位置,建立三维人脸坐标及建立三维视线几何模型;S2,通过提取的人脸特征点位置,分别建立头部偏转估计子模型和视线估计子模型的贝叶斯回归后验概率决策模型;S3,提出预测模型,通过协方差矩阵,利用t‑1时刻对t时刻的视觉注意力进行估计;S4,设置权重关系对步骤S2的视线估计模型、头部估计子模型以及步骤S3的预测子模型进行融合;S5,利用增量学习的方法来对参数进行动态更新。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811057186.9/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top