[发明专利]一种基于神经机器翻译技术的局部引文推荐方法及系统有效
申请号: | 201810994562.0 | 申请日: | 2018-08-27 |
公开(公告)号: | CN109145190B | 公开(公告)日: | 2021-07-30 |
发明(设计)人: | 赵姝;王鑫;刘洋;陈洁;段震;张燕平 | 申请(专利权)人: | 安徽大学 |
主分类号: | G06F16/953 | 分类号: | G06F16/953;G06F40/216;G06F40/58 |
代理公司: | 合肥市浩智运专利代理事务所(普通合伙) 34124 | 代理人: | 张景云 |
地址: | 230000 *** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开基于神经机器翻译技术的局部引文推荐方法及系统,对原始数据集进行引文提取、词形还原、词频统计数据清洗操作,得到引文上下文与被引文章标题的平行语料并构建初始待被引文章列表库;通过词向量模型中的跳字模型结合负采样的方法将引文上下文与被引文章标题中出现的词嵌入到低维语义空间得到词向量,构建一个带有注意力机制的双向门控循环单元的编码器和门控循环单元的解码器框架,将平行语料中的引文上下文通过词向量模型转换为词向量后作为模型的输入,被引文章标题作为输出来训练模型;将编码器‑解码器框架输出的种子标题与待被引文章列表中的所有文章标题逐条进行余弦相似度计算;依据文章年份,选取符合要求的文章作为推荐列表。 | ||
搜索关键词: | 一种 基于 神经 机器翻译 技术 局部 引文 推荐 方法 系统 | ||
【主权项】:
1.一种基于神经机器翻译技术的局部引文推荐方法,其特征在于,包括以下步骤:S1、对原始数据集进行引文提取、词形还原、词频统计数据清洗操作,得到引文上下文与被引文章标题的平行语料并构建初始待被引文章列表库;S2、通过词向量模型中的跳字模型结合负采样的方法将引文上下文与被引文章标题中出现的词嵌入到低维语义空间得到词向量,通过一个嵌入空间使得语义上相似的单词在该空间内距离更近;S3、基于神经机器翻译技术,构建一个带有注意力机制的双向门控循环单元的编码器和门控循环单元的解码器框架,将平行语料中的引文上下文通过词向量模型转换为词向量后作为模型的输入,被引文章标题作为输出来训练模型;S4、将编码器‑解码器框架输出的种子标题与待被引文章列表中的所有文章标题逐条进行余弦相似度计算;S5、依据文章年份,去除发表时间在引文上下文所在文章年份之后的文章,选取相似度符合要求的文章作为推荐列表。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽大学,未经安徽大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810994562.0/,转载请声明来源钻瓜专利网。