[发明专利]基于择优分类的水质预测方法有效

专利信息
申请号: 201810570556.2 申请日: 2018-06-05
公开(公告)号: CN108846512B 公开(公告)日: 2022-02-25
发明(设计)人: 周剑;盛黎明;潘一帆;杨云;王嫄嫄 申请(专利权)人: 南京邮电大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06K9/62;G06N3/04;G06N3/08
代理公司: 南京正联知识产权代理有限公司 32243 代理人: 王素琴
地址: 210023 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 本申请基于择优分类的水质预测方法,对历史的水质指标数据进行归一化处理后,构造训练集,使用训练集分别对Adaboost水质预测模型、RVM水质预测模型、BP神经网络水质预测模型进行训练。然后使用一部分的数据集分别使用三种模型进行预测,结合每个数据使用不同模型得到的实际值与预测值的对比,训练基于SVM的择优分类器。对于新的数据,通过择优分类器可以选出最佳模型,使用最佳模型得到效果最好的预测值。此方法可以极大的提高预测的准确率。
搜索关键词: 基于 择优 分类 水质 预测 方法
【主权项】:
1.基于择优分类的水质预测方法,其特征在于,所述方法包括如下步骤:步骤1:采集水质数据;步骤2:对水质数据与对应的时间节点进行归一化处理;步骤3:构造训练集Training与验证集Validation;步骤4:分别构造RVM水质预测模型、BP神经网络水质预测模型、Adaboost水质预测模型;步骤5:使用步骤3中构造的训练集分别训练步骤4中构造的RVM水质预测模型、BP神经网络水质预测模型、Adaboost水质预测模型;步骤6:使用步骤5中训练好的三种水质预测模型在步骤3中构造的验证集Validation上进行预测,以此预测结果构造SVM择优分类器的训练集Training;步骤7:构造SVM择优分类器,使用步骤6中构造出的训练集Training训练SVM择优分类器;步骤8:输入新的数据,先通过步骤7中已经得到的SVM择优分类器选择出RVM水质预测模型、BP神经网络水质预测模型、Adaboost水质预测模型中最合适该数据的预测模型,再根据选择出的预测模型得到最终预测值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810570556.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top