[发明专利]用于工业中的性能指标的基于数据的优化的方法和系统有效
申请号: | 201810463412.7 | 申请日: | 2018-05-15 |
公开(公告)号: | CN108875784B | 公开(公告)日: | 2023-06-09 |
发明(设计)人: | 文卡塔拉曼纳·伦卡纳;罗汉·潘德亚;拉扬·库马尔;阿尼鲁达·潘达;马赫什·梅纳姆;斯里·哈沙·尼斯塔拉;普拉迪普·拉托尔;贾亚斯里·比斯瓦斯 | 申请(专利权)人: | 塔塔顾问服务有限公司 |
主分类号: | G06F18/23 | 分类号: | G06F18/23;G06Q10/04;G06F16/90 |
代理公司: | 北京集佳知识产权代理有限公司 11227 | 代理人: | 高岩;杨林森 |
地址: | 印度马哈*** | 国省代码: | 暂无信息 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及用于加工和制造厂的性能指标的基于数据的优化的系统和方法。该系统包括用于收集和合并来自工业处理单元的数据、对数据进行预处理以消除离群值和缺失的模块。此外,系统根据数据生成定制输出并识别影响给定处理性能指标的重要变量。该系统还为包括重要特征的关键性能指标构建预测模型,并确定用于在用户干预最少的情况下优化关键性能指标的操作点。特别地,系统接收来自用户的关于要优化的关键性能指标的输入并且向用户通知来自各分析步骤的输出,以帮助用户有效地管理分析并且采取合适的操作决策。 | ||
搜索关键词: | 用于 工业 中的 性能指标 基于 数据 优化 方法 系统 | ||
【主权项】:
1.一种用于分析来自一个或更多个工业处理单元的多个数据以优化处理厂的一个或更多个单元的关键性能指标KPI的计算机实现方法,所述方法包括以下步骤:在接收模块(108)处接收一个或更多个工业处理单元的多个数据,其中,所述多个数据包括原材料特性、中间产品特性、副产品特性、最终产品特性、处理参数、环境参数、市场需求、原材料的可用性和处理设备的状况;在单元级融合模块(110)处合并所接收的多个数据以获得所述一个或更多个工业处理单元中的每一个的单元式数据集,其中每个处理单元的单元式数据集包括期望的采样频率;在验证模块(112)处验证所述一个或更多个工业处理单元的合并的单元式数据集,其中对所述处理单元的所有变量的百分比可用性、标准差、四分位距和不合理值的存在进行计算;在数据预处理模块(114)处对经验证的多个数据进行预处理以获得所述一个或更多个工业处理单元中的每一个的预处理数据集,其中所述预处理是迭代过程,所述迭代过程包括以下步骤:去除离群值、插补缺失值和聚类;在企业级融合模块(116)处将所述一个或更多个工业处理单元中的每一个的预处理与一个或更多个基于物理的模型的模拟变量的一个或更多个值以及来自用户的一个或更多个域输入进行集成,以获得企业级数据集,其中在考虑由于各单元中的停留时间、一个或更多个工业处理单元之间的材料运输时间以及所述处理单元中的一个或更多个传感器的响应时间导致的时间滞后的情况下,将所述单元式数据集合并和同步;在域识别模块(118)处在所述企业级数据集上使用一种或更多种聚类技术来识别一个或更多个操作域,其中所述一种或更多种聚类技术包括基于距离的聚类、基于密度的聚类和分层聚类;在基线统计模块(120)处基于预定义的基线统计量和所述一个或更多个操作域,来确定与所述企业级数据集的KPI相对应的一个或更多个变量的范围,其中,所确定的一个或更多个变量的范围用于在执行分析的时间段中生成一个或更多个KPI图;在特征选择模块(122)处选择所述企业级数据集的一个或更多个特征或关键变量以获得所述企业级数据集的一个或更多个选定特征的超集,其中对所有域式数据集以及所述企业级数据集执行特征选择;在模型构建模块(124)处针对每个KPI开发一个或更多个预测模型,其中所述一个或更多个预测模型使用企业级数据集和所述企业级数据集的一个或更多个选定特征的超集;以及在优化模块(126)处使用一种或更多种优化技术基于关于所述一个或更多个KPI的一个或更多个预测模型和约束来优化至少一个KPI,其中一种或更多种优化技术包括梯度搜索、线性规划、目标规划、模拟退火和演化算法。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于塔塔顾问服务有限公司,未经塔塔顾问服务有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810463412.7/,转载请声明来源钻瓜专利网。