[发明专利]一种基于PCA和BP神经网络的交通事故预测方法在审
申请号: | 201810320886.6 | 申请日: | 2018-04-11 |
公开(公告)号: | CN108510126A | 公开(公告)日: | 2018-09-07 |
发明(设计)人: | 赵海涛;程慧玲;茅天奇;于建国;朱洪波 | 申请(专利权)人: | 南京邮电大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/26;G06K9/62;G06N3/08;G08G1/01 |
代理公司: | 南京正联知识产权代理有限公司 32243 | 代理人: | 王素琴 |
地址: | 210023 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于PCA和BP神经网络的交通事故预测方法,所述方法包括如下步骤:构建基于PCA和BP神经网络的交通事故预测模型,导入车联网中的交通事故数据集至模型中,由模型先筛选出交通事故数据集的特征向量;然后使用所述PCA对所述特征向量进行去相关处理,得到特征向量中预设数量的线性无关的特征;之后将所述线性无关的特征输入所述BP神经网络中进行训练,得到新的用于判断交通事故是否会发生的不相关的特征;输入实时交通数据,所述预测模型根据新的不相关的特征预判是否会有交通事故发生;本发明提供的一种基于PCA和BP神经网络的交通事故预测方法对交通事故预测的准确率更高,可有效预防交通事故的发生。 | ||
搜索关键词: | 交通事故预测 特征向量 交通事故数据 交通事故 线性无关 实时交通数据 特征输入 有效预防 预测模型 车联网 准确率 构建 预判 预设 筛选 | ||
【主权项】:
1.一种基于PCA和BP神经网络的交通事故预测方法,其特征在于,所述方法包括如下步骤:构建基于PCA和BP神经网络的交通事故预测模型,导入车联网中的交通事故数据集至模型中,由模型先筛选出交通事故数据集的特征向量;然后使用所述PCA对所述特征向量进行去相关处理,得到特征向量中预设数量的线性无关的特征;之后将所述线性无关的特征输入所述BP神经网络中进行训练,得到新的用于判断交通事故是否会发生的不相关的特征;输入实时交通数据,所述预测模型根据新的不相关的特征预判是否会有交通事故发生。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810320886.6/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理