[发明专利]基于神经网络预测水位的方法在审

专利信息
申请号: 201810157907.7 申请日: 2018-02-25
公开(公告)号: CN108510103A 公开(公告)日: 2018-09-07
发明(设计)人: 王希花;纪红军;曲兆松;任明轩 申请(专利权)人: 北京尚水信息技术股份有限公司
主分类号: G06Q10/04 分类号: G06Q10/04;G06N3/08;G06N3/02
代理公司: 暂无信息 代理人: 暂无信息
地址: 100085 北京市*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明的基于神经网络预测水位的方法包括以下步骤:根据各站点的关系,下游某一站点(A)的水位与该站点(A)的前一段时间的水位相关,并且与该站点(A)上游的若干个上游站点(B、C、D…)的对应的该瞬间的水位相关,根据已有数据分析,水从上游站点(B、C、D…)流到下游的该站点(A)耗时分别为t1、t2和t3…分钟,选取上游站点(B、C、D…)的前2t1‑t1、2t2‑t2和2t3‑t3…分钟水位数据,以及该站点(A)的前U分钟的水位数据作为输入信号;建立一个神经网络;并经过若干次迭代让神经网络进行自我学习,使得神经网络的预测误差小于设定误差;输入该站点(A)前一段时间的水位和若干个上游站点(B、C、D…)的水位数据,基于神经网络预测该站点(A)水位。
搜索关键词: 站点 水位 神经网络预测 神经网络 水位数据 上游 数据分析 预测误差 自我学习 迭代 耗时
【主权项】:
1.一种基于神经网络预测水位的方法,该方法根据若干个上游站点(B、C、D…)的水位来预测下游某一站点A的水位,其特征在于:该方法它包括以下步骤:1)确定输入信号根据各站点的关系, 下游某一站点(A)的水位与该站点(A)的前一段时间的水位相关,并且与该站点(A)上游的若干个上游站点(B、C、D…)的对应的该瞬间的水位相关,根据已有数据分析,水从上游站点(B、C、D…)流到下游的该站点(A)耗时分别为t1、t2和t3…分钟,选取上游站点(B、C、D…)的前2t1‑ t1、2t2‑ t2和2t3‑ t3…分钟的水位数据,以及该站点(A)的前U分钟的水位数据作为输入信号;2)建立一个神经网络该神经网络包括:输入层(1)、隐含层(3)和输出层(5),输入层(1)包括并列的若干个输入点(2),隐含层(3)包括并列的若干个节点(4),输出层(5)包括一个输出点,每个输入点(2)的输出均作为每个节点(4)的输入,每个节点(4)的输出均作为输出层(5)的输入,输出层(5)输出一个信号;3)让神经网络进行自我学习将上游站点(B、C、D…)的前2t1‑ t1、2t2‑ t2、2t3‑ t3…每分钟的水位数据和该站点(A)的前U分钟的每分钟的水位数据中每一个数据作为一个输入点(2)的输入数据,将上述输入数据输入步骤2)的该站点(A)的神经网络中,让神经网络进行自我一次学习,经过若干次自我学习,使得神经网络的预测误差小于设定误差,得到该站点(A)的神经网络;4)基于神经网络预测该站点(A)水位把上游站点(B、C、D…)的前2t1‑ t1、2t2‑ t2和2t3‑ t3…水位数据和该站点(A)的前U分钟的水位数据作为步骤3)的该站点(A)的神经网络的若干个输入点(2)的输入数据,根据步骤3)的该站点(A)的神经网络得到该站点(A)的水位。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京尚水信息技术股份有限公司,未经北京尚水信息技术股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810157907.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top