[发明专利]一种无人机中继多跳通信系统中的中继节点布设方法在审

专利信息
申请号: 201711199003.2 申请日: 2017-11-26
公开(公告)号: CN108156613A 公开(公告)日: 2018-06-12
发明(设计)人: 韦薇;颜俊;朱卫平 申请(专利权)人: 南京邮电大学
主分类号: H04W16/22 分类号: H04W16/22;H04W16/26;H04W40/20;H04W40/22;H04B7/155
代理公司: 江苏爱信律师事务所 32241 代理人: 唐小红
地址: 210003 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开一种无人机中继多跳通信系统中的中继节点布设方法,在瑞利衰落信道下,提出了一种基于中断概率最小准则的无人机(unmanned aerial vehicle,UAV)中继位置布设方法。首先,利用移动台的中断概率构建目标函数,再由基站与移动台之间的距离构建限制性条件,从而将UAV中继布设问题转化为一个最优化的数学模型。然后利用指数函数的单调性,以及中继UAV距基站的距离与其高度关系的假设,将该优化模型的目标函数进行简化。最后利用传统的KKT(Karush‑Kuhn‑Tucker)优化条件,对该凸优化问题进行求解,求出UAV最佳位置的闭式解,从而在保持计算精度的条件下,降低了计算复杂度,为无人机中继通信系统的设计与优化提供良好的工程借鉴。
搜索关键词: 布设 中继 多跳通信系统 目标函数 中断概率 中继节点 移动台 构建 基站 中继通信系统 计算复杂度 限制性条件 高度关系 瑞利衰落 数学模型 问题转化 优化模型 优化条件 优化问题 指数函数 中继位置 最佳位置 最小准则 传统的 单调性 最优化 求解 闭式 信道 优化
【主权项】:
一种无人机中继多跳通信系统中的中继节点布设方法,其特征在于,包括以下步骤:a.建立无人机中继多跳通信系统的模型该系统模型包含一个基站,n‑1个无人机中继和一个移动台,且无人机距地面高度均为h,基站与移动台之间的距离固定为d,基站与n‑1个无人机中继的传输功率分别为p1,p2,…,pn;b.构建无人机多跳通信系统的中继布设优化模型以n‑1个无人机位置布设的参数di为优化变量,利用移动台的中断概率Pout=Pr[γmin=min{γ12,…,γn}≤γth]构建目标函数,再由基站与移动台之间的距离d固定构建限制性条件,从而将无人机中继布设问题转化为一个最优化的数学模型;c.简化最优化数学模型的目标函数在基于无人机的多跳可再生通信系统中,中断概率可以表示为利用指数函数的单调性,要求Pout的最小值,即为求的最小值;而γth为信噪比门限值,每条链路的平均信噪比γi=Gipi,其中pi为第i跳的传输功率,Gt、Gr分别是发送天线增益和接收天线增益,λ是波长,L是系统损耗因子,N0i是第i跳的噪声功率,εi是第i跳的对数正态阴影衰落参数,α是路径损耗因子,每一跳的距离由于除Si外;其余均可视为常数,所以假设di>>h(i=1,2,…,n),则将该优化模型的目标函数简化为d.证明简化后的优化问题为一个凸优化问题根据简化后的目标函数,可得其Hessian矩阵为因为在自由空间中,路径损耗因子α=2;在城市环境下,路径损耗因子α∈[3,4],所以即该矩阵正定,同时证明该目标函数为凸函数;此外,该优化问题的所有约束都是线性的,从而形成一个凸集,因此,上述优化问题为一个凸优化问题,其局部最优解即为全局最优解;e.最优化模型的求解利用拉格朗日乘子法,可得拉格朗日表达式如下:其中λi与μ均为拉格朗日乘子,再由KKT条件可得,根据即可得出最优中继无人机位置的闭式解:
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711199003.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top