[发明专利]语音数据基于分簇聚类的分块高斯回归模型子集建模方法有效
申请号: | 201711114782.1 | 申请日: | 2017-11-13 |
公开(公告)号: | CN107808673B | 公开(公告)日: | 2020-07-14 |
发明(设计)人: | 缪晓宇;徐宁;王平 | 申请(专利权)人: | 河海大学常州校区 |
主分类号: | G10L25/27 | 分类号: | G10L25/27;G06N20/00 |
代理公司: | 南京纵横知识产权代理有限公司 32224 | 代理人: | 董建林 |
地址: | 213022 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种语音数据基于分簇聚类的分块高斯回归模型子集建模方法,语音数据按时间间隔分帧,对每一帧数据进行特征提取,每一帧提取出来的高维数据降到三维后,进行分块高斯回归模型建模;所述分块高斯回归模型为基于子集法的高斯回归过程模型,在训练数据集中,按照贪婪算法选取出若干代表原训练数据集的点构成子集,将携带冗余信息的数据点剔除掉,本发明根据具体的测试点来调整所选取的子集,并且通过分簇聚类后,选取的子集来自各个不同的簇,能够代表整个数据集,这样选取的子集既能保证是最接近测试点的一部分局部最优点,同时兼顾全局。 | ||
搜索关键词: | 语音 数据 基于 分簇聚类 分块 回归 模型 子集 建模 方法 | ||
【主权项】:
一种语音数据基于分簇聚类的分块高斯回归模型子集建模方法,其特征在于,语音数据按时间间隔分帧,对每一帧数据进行特征提取,每一帧提取出来的特征数据降到三维后,进行分块高斯回归模型建模;所述分块高斯回归模型为基于子集法的高斯回归过程模型,在训练数据集中,按照贪婪算法选取出若干代表原训练数据集的点构成子集,将携带冗余信息的数据点剔除掉。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河海大学常州校区,未经河海大学常州校区许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711114782.1/,转载请声明来源钻瓜专利网。
- 上一篇:便于安装的电陶炉结构
- 下一篇:一种电磁炉
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置