[发明专利]基于神经网络的地震初至波走时获取方法有效
申请号: | 201711049704.8 | 申请日: | 2017-10-31 |
公开(公告)号: | CN107807387B | 公开(公告)日: | 2019-08-27 |
发明(设计)人: | 陈志波;刘森;唐泽宇 | 申请(专利权)人: | 中国科学技术大学 |
主分类号: | G01V1/30 | 分类号: | G01V1/30 |
代理公司: | 北京凯特来知识产权代理有限公司 11260 | 代理人: | 郑立明;郑哲 |
地址: | 230026 安*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于神经网络的地震初至波走时获取方法,包括:获取原始地震波形数据,并将其处理为包含原始波形和对应标注点的数据集,再将数据集划分为训练数据集与测试数据集;根据初至波走时数据获取过程,以尽可能模拟人工拾取结果为目标,结合原始地震波形数据的特征,确定神经网络的结构;将训练数据集作为神经网络的输入,将对应的标注点做为神经网络的输出,对神经网络进行训练,并利用测试数据集对训练后的神经网络进行测试,若满足精度要求,则获得训练好的神经网络;利用根据训练好的神经网络自动获取原始地震波形数据的标注点,从而获得地震初至波走时。该方法提高了地震初至波走时数据的自动获取精度,减少人工校正工作量。 | ||
搜索关键词: | 基于 神经网络 地震 初至波 走时 获取 方法 | ||
【主权项】:
1.一种基于神经网络的地震初至波走时获取方法,其特征在于,包括:获取原始地震波形数据,并将其处理为包含原始波形和对应标注点的数据集,再将数据集划分为训练数据集与测试数据集;根据初至波走时数据获取过程,以尽可能模拟人工拾取结果为目标,结合原始地震波形数据的特征,确定神经网络的结构;将训练数据集作为神经网络的输入,将对应的标注点做为神经网络的输出,对神经网络进行训练,并利用测试数据集对训练后的神经网络进行测试,若满足精度要求,则获得训练好的神经网络;利用根据训练好的神经网络自动获取原始地震波形数据的标注点,从而获得地震初至波走时。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学技术大学,未经中国科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711049704.8/,转载请声明来源钻瓜专利网。
- 上一篇:一种网纹油槽加工工装
- 下一篇:一种模具生产用切割装置