[发明专利]一种基于LSTM的分词方法在审
申请号: | 201710946908.5 | 申请日: | 2017-10-12 |
公开(公告)号: | CN107844475A | 公开(公告)日: | 2018-03-27 |
发明(设计)人: | 岳永鹏;唐华阳 | 申请(专利权)人: | 北京知道未来信息技术有限公司 |
主分类号: | G06F17/27 | 分类号: | G06F17/27;G06N3/04;G06N3/08 |
代理公司: | 北京君尚知识产权代理事务所(普通合伙)11200 | 代理人: | 司立彬 |
地址: | 100102 北京市朝阳区阜*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于LSTM的分词方法。本方法为1)将训练语料数据转化为字符级的语料数据;2)将该语料数据按照句子长度划分,得到若干句子;然后根据句子长度对得到的句子进行分组,得到包括n组句子的数据集合;3)从该数据集合中抽取若干数据作为迭代数据;4)将每次的迭代数据转换为固定长度的向量送入深度学习模型LSTM,训练该深度学习模型LSTM的参数,当深度学习模型产生的损失值迭代变化小于设定阈值不再降低或者达到最大迭代次数,则终止深度学习模型的训练,得到训练后的深度学习模型LSTM;5)将待预测的语料数据转换成转化为字符级的语料数据,并将其送入训练好的深度学习模型LSTM,得到分词结果。 | ||
搜索关键词: | 一种 基于 lstm 分词 方法 | ||
【主权项】:
一种基于LSTM的分词方法,其步骤包括:1)将训练语料数据Original转化为字符级的语料数据New_Data;2)将该语料数据New_Data按照句子长度划分,得到若干句子;然后根据句子长度对得到的句子进行分组,得到包括n组句子的数据集合GroupData;3)从该数据集合GroupData中抽取若干数据作为迭代数据;4)将每次的迭代数据转换为固定长度的向量送入深度学习模型LSTM,训练该深度学习模型LSTM的参数,当深度学习模型产生的损失值迭代变化小于设定阈值不再降低或者达到最大迭代次数,则终止深度学习模型的训练,得到训练后的深度学习模型LSTM;5)将待预测的语料数据转换成转化为字符级的语料数据,并将其送入训练好的深度学习模型LSTM,得到分词结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京知道未来信息技术有限公司,未经北京知道未来信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710946908.5/,转载请声明来源钻瓜专利网。