[发明专利]一种基于统计语言模型得分规整的语音识别方法及系统有效
| 申请号: | 201710790753.0 | 申请日: | 2017-09-05 |
| 公开(公告)号: | CN109427330B | 公开(公告)日: | 2023-04-07 |
| 发明(设计)人: | 张鹏远;张一珂;潘接林;颜永红 | 申请(专利权)人: | 中国科学院声学研究所;北京中科信利技术有限公司 |
| 主分类号: | G10L15/14 | 分类号: | G10L15/14 |
| 代理公司: | 北京方安思达知识产权代理有限公司 11472 | 代理人: | 陈琳琳;武玥 |
| 地址: | 100190 *** | 国省代码: | 北京;11 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明一种基于统计语言模型得分规整的语音识别方法,所述方法包括:步骤1)建立和训练若干个基于多尺度马尔科夫假设的统计语言模型;包括:k阶统计N元文法语言模型,k‑1个不同阶数的统计N元文法语言模型和k‑1个不同阶数的改进的统计N元文法语言模型;步骤2)将待识别语音进行第一遍解码,得到L条候选语音s;步骤3)利用步骤1)的若干个基于多尺度马尔科夫假设的统计语言模型计算L条候选语音s的语言模型得分,结合声学模型得分计算出每条候选语音的得分;步骤4)选出得分最高的候选语音作为第二遍解码结果;该结果为最终的识别结果。本发明的方法对于识别错误具有良好的容错性,能够有效的提升语音识别的正确率。 | ||
| 搜索关键词: | 一种 基于 统计 语言 模型 得分 规整 语音 识别 方法 系统 | ||
【主权项】:
1.一种基于统计语言模型得分规整的语音识别方法,所述方法包括:步骤1)建立和训练若干个基于多尺度马尔科夫假设的统计语言模型;包括:k阶统计N元文法语言模型,k‑1个不同阶数的统计N元文法语言模型和k‑1个不同阶数的改进的统计N元文法语言模型;步骤2)将待识别语音进行第一遍解码,得到L条候选语音s;步骤3)利用步骤1)的若干个基于多尺度马尔科夫假设的统计语言模型计算L条候选语音s的语言模型得分,结合声学模型得分计算出每条候选语音的得分;步骤4)选出得分最高的候选语音作为第二遍解码结果;该结果为最终的识别结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院声学研究所;北京中科信利技术有限公司,未经中国科学院声学研究所;北京中科信利技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710790753.0/,转载请声明来源钻瓜专利网。
- 上一篇:信息处理装置、车载装置和存储介质
- 下一篇:语音识别方法及装置





