[发明专利]一种基于SVM的标签发展趋势预测模型的构建方法有效

专利信息
申请号: 201710127478.4 申请日: 2017-03-06
公开(公告)号: CN106951471B 公开(公告)日: 2020-05-05
发明(设计)人: 傅晨波;郑永立;李诗迪;宣琦 申请(专利权)人: 浙江工业大学
主分类号: G06F16/955 分类号: G06F16/955;G06F16/9535
代理公司: 杭州斯可睿专利事务所有限公司 33241 代理人: 王利强
地址: 310014 浙江省杭*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于SVM的标签发展趋势预测模型的构建方法,包括以下步骤:(1)数据集预处理,统计网站的帖子数据,去除非相关数据信息;(2)选取样本标签,统计标签新出现两年之后的频率,提取流行标签集合和非流行标签集合;(3)构建标签的有权无向网络;(4)提取标签特征数据,包括标签的网络特征以及相关属性特征,作为训练测试数据;(5)采用支持向量机SVM的方法对数据进行训练,并构建标签流行趋势预测模型。本发明考虑标签之间相关性,通过属性特征结合网络特征来对标签的未来发展趋势进行预测分类,对于预测潜在流行标签具有较高的精度。既有利于引导用户选择合理的标签,也有利于网站建设者提供更高质量的标签。
搜索关键词: 一种 基于 svm 标签 发展趋势 预测 模型 构建 方法
【主权项】:
一种基于SVM的标签发展趋势预测模型的构建方法,其特征在于,所述方法包括如下步骤:步骤1:数据预处理,收集网站社区的信息内容和其对应的标签数据,对其数据内容按时间排序,取社区形成N天之后的数据,以确保社区的标签网络初步形成;步骤2:选取样本标签,对数据集进行统计,获取社区标签频率并排序,取比例为前α%的标签作为流行标签,其集合记为Upop;在剩下的标签中选取与流行标签时间相对照的标签为非流行标签;步骤3:构建标签网络,对同一个信息内容中出现的标签,即认为这些标签间存在关系,使其两两之间形成连边;对所有信息遍历,得到有权无向网络的标签网络图GTag,其中节点为新出现的标签,连边为标签之间的关系,网络的权重为两者共同出现的次数;步骤4:提取特征数据,对样本标签集合U={Upop,Uunpop},提取其内标签首次创建之后M天网络特征和属性特征,建立样本训练数据集;步骤5:采用机器学习分类器模型支持向量机SVM,选取核函数,训练生成基于SVM的标签流行趋势预测模型,并进行十折交叉验证,得出模型结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710127478.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top