[发明专利]基于Elman神经网络的云端连续血压测量方法及系统有效
申请号: | 201710100824.X | 申请日: | 2017-02-23 |
公开(公告)号: | CN106821356B | 公开(公告)日: | 2019-08-27 |
发明(设计)人: | 司玉娟;王月猛;刘立勋;郎六琪;于靖涛 | 申请(专利权)人: | 吉林大学;吉林大学珠海学院 |
主分类号: | A61B5/022 | 分类号: | A61B5/022;A61B5/00 |
代理公司: | 广州嘉权专利商标事务所有限公司 44205 | 代理人: | 俞梁清 |
地址: | 130012 吉林*** | 国省代码: | 吉林;22 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了基于Elman神经网络的云端连续血压测量方法和系统,包括步骤:S1、测量获得被测者的实时的脉搏波信号;S2、对脉搏波信号进行去噪处理;S3、对去噪后的脉搏波信号进行特征点提取;S4、将提取获得的脉搏波信号的特征点作为Elman神经网络的输入,进行采用训练好的Elman神经网络模型对血压值进行预测,将获得的预测值作为连续血压测量值。本发明基于Elman神经网络,可以准确的预测出血压值,具有较好的准确性和稳定性,可广泛应用于血压测量行业中。 | ||
搜索关键词: | 基于 elman 神经网络 云端 连续 血压 测量方法 系统 | ||
【主权项】:
1.基于Elman神经网络的云端连续血压测量系统,其特征在于,包括手机终端模块、终端服务器模块、用于采集被测者的脉搏波信号的脉搏信号采集模块和用于采集被测者的血压值信号的血压采集模块,所述血压采集模块与终端服务器模块连接,所述手机终端模块用于对脉搏波信号进行实时显示并对其进行去噪处理和特征点提取,所述终端服务器模块用于将提取获得的脉搏波信号的特征点作为Elman神经网络的输入,并采用训练好的Elman神经网络模型对血压值进行预测,将获得的预测值作为连续血压测量值,并将连续血压测量值返回到手机终端模块进行显示。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于吉林大学;吉林大学珠海学院,未经吉林大学;吉林大学珠海学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710100824.X/,转载请声明来源钻瓜专利网。