[发明专利]一种基于图像的重光照方法有效

专利信息
申请号: 201610998904.7 申请日: 2016-11-14
公开(公告)号: CN106570928B 公开(公告)日: 2019-06-21
发明(设计)人: 韦伟;刘惠义;钱苏斌 申请(专利权)人: 河海大学
主分类号: G06T15/20 分类号: G06T15/20;G06N3/04;G06N3/08
代理公司: 南京经纬专利商标代理有限公司 32200 代理人: 朱小兵;刘莎
地址: 211100 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于图像的重光照方法,属于计算机图形学领域。为了实现用尽可能少的样本尽可能准确地重光照,在图像样本和图像像素两个空间反复进行定量地随机采样,并用人工神经网络进行训练,直到所有像素点训练精度到设定阈值。考虑到人工神经网络在训练时有最小样本要求,因此在像素点训练样本不足时,利用集成学习的Bagging算法思想对其进行平均化处理。本发明在模拟的三维场景中进行测试,结果表明,与现有的技术相比,不仅训练时间少,健壮性强;在相同的相对误差精度下,重光照所需的图像样本更小,速度快实时性好,重构场景图像的PSNR值更高。
搜索关键词: 一种 基于 图像 光照 方法
【主权项】:
1.一种基于图像的重光照方法,其特征在于,包括以下具体步骤:步骤1:采集一组三维场景数据,包括点光源的LigX、LigY坐标及其对应的在固定视点输出的图像集ImageSet,计算得到图像集ImageSet在R、G、B三个通道的平均值ImgAvg_R、ImgAvg_G、ImgAvg_B;步骤2:在图像集ImageSet中随机采样,构成图像样本数为ImageNum的图像子集ImageSubset;步骤3:在图像子集ImageSubset的像素空间中随机采样,获取人工神经网络的训练样本集,具体为:(1)在图像子集ImageSubset的像素空间中随机采样,构成像素点集,其中,采样数为PixNum,像素点的坐标为[Px,Py];(2)训练样本集包括分别对应人工神经网络的输入和输出的两个部分,其中,输入部分包括Px、Py、LigX、LigY、ImgAvg_R、ImgAvg_G、ImgAvg_B,输出部分为[LigX,LigY]与[Px,Py]相应处的图像RGB值;步骤4:利用步骤3的训练样本集对人工神经网络进行训练,训练完成后,将相对平方误差小于等于预设第一阈值δ1的像素点标记为该训练完成的人工神经网络;步骤5,在步骤4中未标记的像素点中重新随机采样,再次训练人工神经网络,直至训练样本集中的像素点全部被标记或未标记的像素点不满足人工神经网络训练的最小样本要求;当未标记的像素点不满足人工神经网络训练的最小样本要求时,利用Bagging集成学习的思想,未标记的像素点由所有神经网络共同决定其输出;步骤6:用训练好的人工神经网络测试图像集ImageSet,若相对均方误差达到预设第二阈值δ2,则保存训练好的人工神经网络,执行步骤7;否则,增加图像样本数ImageNum,返回2;步骤7:用训练好的神经网络重构光源在任意位置下的场景。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河海大学,未经河海大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610998904.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top