[发明专利]基于光电容积脉搏波最佳周期波形的身份识别方法有效

专利信息
申请号: 201610876814.0 申请日: 2016-10-08
公开(公告)号: CN106473750B 公开(公告)日: 2019-03-26
发明(设计)人: 同鸣;杨晓玲 申请(专利权)人: 西安电子科技大学
主分类号: A61B5/117 分类号: A61B5/117;G06K9/00
代理公司: 陕西电子工业专利中心 61205 代理人: 王品华;韦全生
地址: 710071 陕*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于光电容积脉搏波最佳周期波形的身份识别方法,主要解决现有PPG信号身份识别方法识别率较低的问题。其实现步骤:1)获取被鉴定者PPG信号,进行小波去噪和归一化处理;2)对处理后的PPG信号进行波形分割,获取多个单周期波形;3)选取最佳单周期波形,去除异形波;4)对多个最佳单周期波形进行平均,得到平均周期波形;5)进行傅里叶变换获取幅度谱样本;6)用非负矩阵分解对幅度谱样本降维,生成测试特征向量;7)利用支持向量机将测试特征向量与预先生成的被鉴定者训练特征向量库进行匹配,输出身份识别结果。本发明的身份识别率可达到99.6%以上,有效性和可靠性高,可用于远程医疗高身份识别率的场合。
搜索关键词: 基于 光电 容积 脉搏 最佳 周期 波形 身份 识别 方法
【主权项】:
1.基于光电容积脉搏波最佳周期波形的身份识别方法,包括如下步骤:(1)读取被鉴定者在设定的时间段内的光电容积脉搏波PPG信号x;(2)对PPG信号x进行小波去噪处理,得到去噪后的PPG信号y;(3)对去噪后的PPG信号y进行归一化处理,得到归一化后的PPG信号z;(4)对归一化后的PPG信号z进行收缩期波峰检测,并记录检测出的所有收缩期波峰的值及所有收缩期波峰在归一化后的PPG信号z中的索引;(5)将步骤(4)中检测出的所有收缩期波峰作为分割点,对归一化后的PPG信号z进行波形分割,将每相邻两个分割点之间的波形作为一个周期波形,获取分割后的所有单周期波形;(6)根据所有单周期波形峰值的大小,获取峰值索引集合L:(6a)将所有单周期波形第一个采样点的值作为该单周期波形的峰值,统计步骤(5)中得到的所有单周期波形峰值的大小,得到所有峰值中的最小值A和最大值B,将区间[A,B]划分为N个等长度的峰值区间,N为大于零的整数;(6b)根据单周期波形峰值的大小,统计所有单周期波形分布在各个峰值区间中的个数,根据各峰值区间中单周期波形的个数,选取单周期波形个数最多的峰值区间作为有效峰值区间;(6c)统计有效峰值区间中所有单周期波形的第一个采样点在归一化后PPG信号z中的索引,并按照索引值的大小,从小到大顺序排列,得到峰值索引集合L;(7)将单周期波形的总采样点数作为单周期波形的宽度,获取宽度索引集合I:(7a)统计步骤(5)中得到的所有单周期波形宽度大小,得到单周期波形宽度的最小值C和最大值D,将区间[C,D]划分为N个等长度的宽度区间;(7b)根据单周期波形的宽度,统计步骤(5)中得到的所有单周期波形分布在各个宽度区间中的个数,根据各宽度区间中单周期波形的个数,选取单周期波形个数最多的宽度区间作为有效宽度区间;(7c)统计有效宽度区间中的所有单周期波形第一个采样点在归一化后的PPG信号z中的索引,并按照索引值大小,从小到大顺序排列,得到宽度索引集合I;(8)将峰值索引集合L和宽度索引集合I进行取交集操作,得到两个索引集合中共有的索引元素,组成有效索引集合Ind;(9)从归一化后的PPG信号z中,提取有效索引集合Ind中所有索引值对应的单周期波形,即为最佳的单周期波形;(10)对从步骤(9)中获得的所有最佳单周期波形进行插值,使得所有最佳单周期波形的采样点数相同;(11)去除步骤(10)插值后所有最佳单周期波形中的异形波,得到去除异形波后的最佳单周期波形;对所有的最佳单周期波形每M个进行一次波形平均,得到平均周期波形;对获得的所有平均周期波形进行傅里叶变换,获取被鉴定者的幅度谱样本,其中,M为大于零的整数;(12)对被鉴定者的所有幅度谱样本,运用非负矩阵分解方法NMF降维处理,并把降维后的所有幅度谱样本作为被鉴定者的测试特征向量;(13)将被鉴定者的测试特征向量与预先生成的训练特征向量库进行匹配,得出被鉴定者的身份识别率并输出。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610876814.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top