[发明专利]一种基于改进的IHCMAC神经网络的光伏发电功率预测方法在审
申请号: | 201610681613.5 | 申请日: | 2016-08-17 |
公开(公告)号: | CN106203743A | 公开(公告)日: | 2016-12-07 |
发明(设计)人: | 段培永;张洁珏;崔冲;张震;邹明君;吕东岳 | 申请(专利权)人: | 山东建筑大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/06;G06K9/62;G06N3/02 |
代理公司: | 济南圣达知识产权代理有限公司 37221 | 代理人: | 张勇 |
地址: | 250101 山东省济*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于改进的IHCMAC神经网络的光伏发电功率预测方法,在定量分析气象主要参数与光伏发电输出功率相关性的基础上,采用改进的IHCMAC神经网络作为短期光伏发电功率预测模型。采用动态模糊K均值(K‑MEANS)聚类算法,确定神经网络节点和确定节点数目;利用实时采集的现场气象参数、光伏发电等数据,作为预测模型的学习样本和验证样本。该方法采用动态模糊K均值聚类算法合理改进的IHCMAC神经网络,能有效确定和减少神经网络的节点数目,缩短参数学习时间,提高学习精度。 | ||
搜索关键词: | 一种 基于 改进 ihcmac 神经网络 发电 功率 预测 方法 | ||
【主权项】:
一种基于改进的IHCMAC神经网络的光伏发电功率预测方法,其特征是:包括以下步骤:(1)采集光伏发电系统的输出功率及气象数据;(2)对数据进行过滤,分析不同气象因素与光伏发电输出功率的相关性,提取主要影响因素作为输入信息;(3)利用归一化方法消除数量级对预测结果的影响,将归一化后的数据利用平均值法进行缺失数据修补,利用拉依达准则剔除异常值;(4)采用K平均聚类算法减少IHCMAC神经网络的节点数目,利用改进后的IHCMAC神经网络对光伏发电功率进行预测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东建筑大学,未经山东建筑大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610681613.5/,转载请声明来源钻瓜专利网。
- 上一篇:一种电子面单风险控制方法、装置及电子设备
- 下一篇:预测挖矿方法及装置
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理