[发明专利]一种电感电流断续模式分数阶开关变换器的符号分析方法有效
申请号: | 201610556414.1 | 申请日: | 2016-07-12 |
公开(公告)号: | CN106227925B | 公开(公告)日: | 2019-05-14 |
发明(设计)人: | 陈艳峰;胡劼;陈曦;张波 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06F17/50 | 分类号: | G06F17/50 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 罗观祥 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种电感电流断续模式分数阶开关变换器的符号分析方法,该方法结合了谐波平衡的原理,通过将变换器中关于状态变量分数阶次的微分运算转换为微分算子,并将所有微分算子合并为对角符号矩阵,从而将求解非整数阶微积分运算的过程转化为矩阵运算和线性方程(组)求解的过程,相比较已有的针对分数阶开关变换器常用的在Matlab/Simulink中建立Oustaloup滤波器近似模型的分析方法,本发明方法除了能够解析地分析变换器状态变量纹波峰峰值大小、储能元件阶次变化对变换器工作状态的影响,还能够快速地获得状态变量的稳态周期解析解,并可以用于分析状态变量的谐波成分。 | ||
搜索关键词: | 一种 电感 电流 断续 模式 分数 开关 变换器 符号 分析 方法 | ||
【主权项】:
1.一种电感电流断续模式分数阶开关变换器的符号分析方法,其特征在于,包括以下步骤:1)建立分数阶开关变换器的数学模型工作在电感电流断续模式DCM状态下分数阶DC‑DC变换器的系统状态描述为:
式中,x=[iLm vCm]T表示系统的状态变量,包括第m个电感上的电流iLm、第m个电容上的电压vCm,p表示相应的电感L、电容C元件上对应的系统状态变量的阶次,A0和B0分别表示不受开关函数影响的系数矩阵,A1B1和A3B3分别表示受开关函数影响的系数矩阵;开关函数δ(1)和δ(3)定义为:![]()
其中,变换器在开环工作时占空比D1和D3为固定值,同时,令非线性部分为:f(q)=δ(q)(Aqx+Bq)τ=ωt,其中
然后将针对状态变量的微积分运算转换为关于微积分算子的代数运算,即
由于变换器中存在多个状态变量,故将每个状态变量相应的微积分算子合并为微分算子对角符号矩阵
矩阵κ中α、β这些元素用于表示不同状态变量的分数阶微积分阶次,当L、C均为整数阶时,κ=‑I,I为单位矩阵,其中的+/‑号分别表示对状态变量求积分/微分;通过将微分运算转换为关于微分算子的代数运算,能够将分数阶开关变换器的数学模型如下所示:
式(3)中,G0为所有包含微分算子对角符号矩阵κ的Gki组成的列矩阵,k∈Eir表示当前第i阶修正量中谐波次数k,i、k的定义后同,
从Gki的形式能够体现出分数阶次对状态变量解析解的影响;将状态变量x以及开关函数δ(q)均展开为主部与小量余项之和的形式:
将上式代入f(q)=δ(q)(Aqx+Bq),合并相同阶次余项小量,得:
其中:
式中,用
表示所述状态变量x第i阶修正量的主部,用
表示所述状态变量x第i阶修正量的余项小量;根据谐波平衡原理,将所述状态变量x与开关函数δ(q)的展开式(4)中主部和第i阶余项小量做傅里叶展开如下:
其中aki表示第i阶修正量的k次谐波成分的幅值,所述开关函数δ(q)展开式系数表达式为:![]()
其中
依据谐波平衡原理,将系数展开式(8)代入傅里叶展开式(7),依次求解状态变量的主振荡分量和各阶修正量;2)求主振荡分量首先,求解状态变量的主振荡分量,通常主振荡中只含有直流量,故设为:x0=a00=[I00 V00]T (9)当k=0,即G0=G00=A0,x0代入式(6)中
再代入(4)式中,得:G00·x0+b0(A1x0+B1)+c0(A3x0+B3)+B0=0 (10)由式(10)求得变换器状态变量的主振荡分量:
3)求各阶修正量根据主振荡分量余项R1中含有的谐波成分,设状态变量的一阶修正量形式如下:
其中,a11=[I11 V11]T,c.c表示共轭项,后同;由状态变量的一阶修正量中的谐波成分可知
k∈E1r,代入式(6)中f1,得到一阶修正量表达式:Gk1·x1+(b0A1x1+b10B1+b10A1x0+b10B1)+(c0A3x1+c10B3+c10A3x0+c10B3)+B0=0 (13)根据式(13)能够获得关于谐波幅值a01和ak1的线性方程组;将参数代入所得当前阶次修正量的表达式,若当前阶次修正量的各次谐波幅值相比较上一阶修正量小于一个数量级,则不需做更高阶的修正,反之,继续依据上述过程继续求更高阶次的修正量;4)将主振荡分量和各阶修正量相加,获得关于状态变量的稳态周期解析解表达式。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610556414.1/,转载请声明来源钻瓜专利网。