[发明专利]一种基于Hermite径向基函数的三角网格补洞方法有效
申请号: | 201410610766.1 | 申请日: | 2014-11-03 |
公开(公告)号: | CN104361632A | 公开(公告)日: | 2015-02-18 |
发明(设计)人: | 王一;李帅;郝爱民;秦洪 | 申请(专利权)人: | 北京航空航天大学 |
主分类号: | G06T17/30 | 分类号: | G06T17/30 |
代理公司: | 北京科迪生专利代理有限责任公司 11251 | 代理人: | 杨学明;顾炜 |
地址: | 100191*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于Hermite径向基函数的三角网格补洞方法,该方法包括以下步骤:提取孔洞边界后,基于孔洞周围的顶点以及法线信息,利用Hermite径向基函数插值出隐式曲面;将边界投影到平面,然后对孔洞边界进行限定Delaunay三角化,并对三角化后的网格进行细分处理;最后将新增的三角形调整到隐式曲面上,完成修补。该方法具有较高的鲁棒性而且不需要人工参与,对曲率变化较大的网格孔洞具有好的修补效果。 | ||
搜索关键词: | 一种 基于 hermite 径向 函数 三角 网格 方法 | ||
【主权项】:
一种基于Hermite径向基函数的三角网格补洞方法,应用于三维扫描模型的孔洞修补,其特征在于,包括如下步骤:(1)提取孔洞边界,得到孔洞边界以及其邻域顶点,利用Hermite径向基函数生成符合孔洞周围网格曲率变化的隐式曲面;(2)利用PCA方法生成孔洞边界上顶点的拟合平面,将提取的孔洞边界投影到该平面上;若存在自交叉边界,则优化PCA方法的最小特征值,将孔洞分解为小孔洞;利用基于扫描线的CDT算法对投影到平面上的孔洞边界进行三角划分,然后将三角划分的结果反投影回原模型;(3)为了保证新增三角形的密度和孔洞周围网格密度保持一致,为孔洞边界上的每个顶点定义一个密度属性,以该密度属性作为指导对新增三角形进行细分,完成采样点的选取;(4)利用梯度下降法将细分的新增顶点映射到步骤(1)生成的隐式曲面上。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201410610766.1/,转载请声明来源钻瓜专利网。