[发明专利]数据分类方法及装置有效

专利信息
申请号: 201410510302.3 申请日: 2014-09-28
公开(公告)号: CN104298729B 公开(公告)日: 2018-02-23
发明(设计)人: 龙飞;陈志军;张涛 申请(专利权)人: 小米科技有限责任公司
主分类号: G06F17/30 分类号: G06F17/30
代理公司: 北京三高永信知识产权代理有限责任公司11138 代理人: 林锦澜
地址: 100085 北京市海淀区清*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 本公开揭示了一种数据分类方法及装置,属于数据分类技术领域。所述数据分类方法包括获取测试数据,通过预定方法计算得到与测试数据对应的稀疏系数向量;根据训练得到的训练矩阵确定稀疏系数向量中的每个非零变量针对每种类别标签的后验概率;根据每种类别标签所对应的后验概率,计算得到每种类别标签所对应的后验概率之和;将后验概率之和最大的类别标签所指示的类别,确定为测试数据的类别。通过确定稀疏系数向量中的每个非零变量针对每种类别的后验概率,将后验概率和值最大的类别确定为测试数据的类别;因此解决了一般的分类方法由于需要训练复杂的分类器且存在大量的模型文件,从而使得分类速度较慢的问题;达到了提高分类效率的效果。
搜索关键词: 数据 分类 方法 装置
【主权项】:
一种数据分类方法,其特征在于,所述方法包括:选取第一训练样本集和第二训练样本集,所述第一训练样本集和所述第二训练样本集中的训练样本为图片;利用所述第一训练样本集得到字典,对于所述第二训练样本集中的每个训练样本,计算训练样本映射到所述字典时得到的稀疏系数向量,将所述稀疏系数向量确定为训练稀疏系数向量;对于每个类别标签所指示的类别,根据各个所述训练稀疏系数向量中的位于同一位置的各个变量,计算所述位置处的变量为非零时,所述训练稀疏系数向量所对应的训练样本属于类别标签所指示类别的后验概率;利用各个位置的变量所对应的后验概率组成训练矩阵,所述训练矩阵中一行的数据分别为各个所述训练稀疏系数向量中同一个位置的变量所对应的后验概率,所述训练矩阵的每一行对应各个所述训练稀疏系数向量中的一个位置的变量,每一列对应一个类别标签;获取测试数据,通过预定方法计算得到与所述测试数据对应的稀疏系数向量,所述稀疏系数向量是所述测试数据映射到训练得到的字典上时得到的系数向量;对于所述稀疏系数向量中的每个非零变量,根据训练得到的训练矩阵确定所述非零变量针对每种类别标签的后验概率,所述训练矩阵中包括各个变量属于每个类别标签所指示类别的后验概率;根据每种类别标签所对应的后验概率,计算得到每种类别标签所对应的后验概率之和;将后验概率之和最大的类别标签所指示的类别,确定为所述测试数据的类别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于小米科技有限责任公司,未经小米科技有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201410510302.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top