[发明专利]三维多孔g-C3N4材料的制备方法在审
申请号: | 201410468720.0 | 申请日: | 2014-09-15 |
公开(公告)号: | CN104292236A | 公开(公告)日: | 2015-01-21 |
发明(设计)人: | 杨辉;沈建超;申乾宏;冯宇;蔡奇风 | 申请(专利权)人: | 浙江大学 |
主分类号: | C07D487/22 | 分类号: | C07D487/22;B01J31/06;B01J35/10 |
代理公司: | 杭州中成专利事务所有限公司 33212 | 代理人: | 周世骏 |
地址: | 310027 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明是关于半导体材料领域,旨在提供一种三维多孔g-C3N4材料的制备方法。本发明包括三个步骤:A:将H2SO4水溶液逐滴加入80℃的三聚氰胺水溶液中形成白色悬浮液;继续搅拌2h后获得沉淀;将该沉淀过滤,并用蒸馏水、无水乙醇洗涤,干燥处理24h后获得三聚氰胺硫酸盐;B:将三聚氰胺硫酸盐放入刚玉舟中,随后放置在管式炉中进行烧结,待冷却至室温后,将获得的黄色聚合产物研磨至粉状颗粒,获得g-C3N4颗粒;C:g-C3N4水热质子化工艺。本发明的有益效果是:有效降低了g-C3N4聚合温度,通过对三聚氰胺的质子化作用,降低了三聚氰胺的聚合能,使三聚氰胺能在较低温度下能聚合生成石墨状g-C3N4。 | ||
搜索关键词: | 三维 多孔 sub 材料 制备 方法 | ||
【主权项】:
三维多孔g‑C3N4材料的制备方法,其特征在于,包括如下步骤:步骤A:在搅拌条件下,将H2SO4水溶液逐滴加入80℃的三聚氰胺水溶液中形成白色悬浮液;继续搅拌2h后获得沉淀;将该沉淀过滤,并用蒸馏水和无水乙醇分别洗涤三次,在60℃干燥处理24h后获得三聚氰胺硫酸盐;其中,所述H2SO4水溶液的摩尔浓度为0.02mol/L~2mol/L,三聚氰胺水溶液的摩尔浓度为0.02mol/L~2mol/L,控制反应物的量使H2SO4与三聚氰胺的摩尔比为5∶1~0.5∶1;步骤B:将三聚氰胺硫酸盐放入刚玉舟中,随后放置在管式炉中进行烧结,待冷却至室温后,将获得的黄色聚合产物研磨至粉状颗粒,获得g‑C3N4颗粒;其中,管式炉中烧结的保护气氛为惰性气体,烧结机制为先快速升温至380℃,后缓慢升温至450℃~550℃并保温2h~6h,其中快速升温段升温速率为10℃/min,缓慢升温段升温速率为2℃/min;步骤C:g‑C3N4水热质子化工艺:将步骤B中获得的g‑C3N4颗粒分散到无水乙醇中得到分散体系,超声处理1h后,以50r/min的转速下向该分散体系中逐滴加入H2SO4水溶液,持续搅拌18h后在密闭条件下水浴搅拌处理,随后转移至水热反应釜进行水热反应,水热反应后所得沉淀过滤,并用蒸馏水和无水乙醇分别洗涤三次,最后以60℃烘干处理,即为1次g‑C3N4水热质子化工艺操作;完成上述g‑C3N4水热质子化工艺操作1~3次,获得三维多孔g‑C3N4材料;其中,g‑C3N4颗粒在分散体系中的固含量为0.5%‑2%,H2SO4水溶液的摩尔浓度为0.05mol/L~0.2mol/L,控制H2SO4与g‑C3N4的摩尔比4∶1~1∶1;水浴温度为70℃~90℃,水浴处理时间为2h~6h;水热反应温度为120℃~180℃,水热反应时间为12h~36h。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201410468720.0/,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法