[发明专利]铝杆氧化染色工艺参数优化专家系统有效

专利信息
申请号: 201410163951.0 申请日: 2014-04-22
公开(公告)号: CN103955760B 公开(公告)日: 2017-01-25
发明(设计)人: 潘郁;吴媚;叶斌;王秀明;潘芳 申请(专利权)人: 江苏祥兆文具有限公司;南京工业大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/04;G06N3/08;G06N3/00
代理公司: 南京知识律师事务所32207 代理人: 孙雪
地址: 215500 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种铝杆氧化染色工艺参数优化专家系统,以实现铝杆氧化染色生产过程的工艺参数动态优化。本发明从全局生产动态柔性优化的角度出发对化学抛光、电解抛光、药砂处理及二次处理四条工艺路线进行了优化控制。在工艺参数采集装置的生产信息收集基础上,建立柔性神经网络识别器模拟生产线上状态,拟合可控参数组合与生产效果之间的联系,最后通过PSO群智能优化模块动态寻找到最优的实时参数集合反馈至生产现场调控装置上指导生产,信息化与自动化技术的结合使得该发明在复杂工艺生产现场的应用性强,柔性的工艺参数处理使得该发明能适应应用单位的发展进行升级,降低了生产成本同时提高了产品的合格率。
搜索关键词: 氧化 染色 工艺 参数 优化 专家系统
【主权项】:
一种铝杆氧化染色工艺参数优化专家系统,其特征在于,包括生产数据采集装置、工艺参数交互器、可靠传输终端、数据存储服务器、数据管理模块、基础参数管理模块、神经网络识别器、PSO群智能参数优化模块、人员管理认证模块、辅助数据存储服务器;其中,生产数据采集装置与工艺参数交互器放置于生产现场,二者构成整个铝杆氧化染色工艺参数优化专家系统的前端感知部分,并通过可靠传输终端与数据存储服务器连接;可靠传输终端、数据存储服务器、数据管理模块与神经网络识别器相连,实现对生产现场的动态模拟;基础参数管理模块与神经网络识别器及PSO群智能参数优化模块相连,同时连接辅助数据存储服务器构建中央优化部分基础结构;PSO群智能参数优化模块、工艺参数交互器相连,指导现场生产;人员管理认证模块与辅助数据存储服务器相连,并与基础参数管理模块共同构成本系统的辅助处理端;所述生产数据采集装置负责在生产现场采集工艺参数组合数据,经由工艺参数交互器进行数据完整性检查后,通过可靠传输终端发送至数据存储服务器,作为神经网络识别器的学习对象;所述工艺参数交互器包括从生产现场发送至中央优化部分的发送端以及接收端;通过交互过程,实现生产现场的工艺参数控制;所述可靠传输终端包含传输控制机制,具体包括传输线程调度、失败任务还原、更新执行任务;所述数据存储服务器用于存储生产现场发送来的工艺参数组合及对应的辅助信息,并根据不同工艺路线存储至数据存储服务器,用于神经网络识别器的学习和训练;所述数据管理模块负责管理数据存储服务器中的工艺参数组合数据,并输送需要学习的工艺参数组合数据到神经网络识别器中;学习指令的发出需要得到人员管理认证模块的认可;所述人员管理认证模块负责处理系统操作人员发送的登入本系统的请求,通过比对辅助数据存储服务器存储的人员身份信息,赋予系统操作人员相应的操作权限;获取操作权限的系统操作人员发出学习指令至神经网络识别器,此时神经网络识别器促发基础参数管理模块调入算法参数并将数据管理模块提供的工艺参数组合数据纳入学习内容,学习完成后反馈误差情况并提示转入PSO群智能参数优化模块;所述基础参数管理模块负责设置和更新神经网络识别器以及PSO群智能参数优化模块的算法参数,通过对算法参数的调整,实现对本系统的适应性和准确性调整;所述神经网络识别器包含两个部分:BP神经网络结构框架以及神经网络权值管理;所述神经网络识别器中不同神经网络的区别在于神经元的个数以及网络权值不同,通过对二者进行改变使得神经网络可以学习铝杆氧化染色工艺的四条工艺路线,拟合工艺参数组合与生产效果之间的联系进而用于工艺参数优化和问题诊断;PSO群智能参数优化模块包括生产预测功能及智能优化功能,通过调用相应的神经网络识别器来预测现有工艺参数组合的产品合格率并对相应工艺路线上的工艺参数组合进行优化;根据实际需求,在PSO群智能参数优化模块中使用生产预测功能来诊断工艺参数组合中出现问题的环节或寻找当前最优的工艺参数组合;经上述寻找得到的当前最优的工艺参数组合经可靠传输终端发送至工艺参数交互器,反馈至生产现场进而实现对生产现场的动态工艺参数优化控制;所述PSO为粒子群优化算法。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏祥兆文具有限公司;南京工业大学,未经江苏祥兆文具有限公司;南京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201410163951.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top