[发明专利]一种基于自适应神经网络的小型无人旋翼机高精度控制方法有效

专利信息
申请号: 201310347956.4 申请日: 2013-08-12
公开(公告)号: CN103412488B 公开(公告)日: 2018-10-30
发明(设计)人: 雷旭升;郭克信;陆培;张霄 申请(专利权)人: 北京航空航天大学
主分类号: G05B13/04 分类号: G05B13/04
代理公司: 暂无信息 代理人: 暂无信息
地址: 100191*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于自适应神经网络的小型无人旋翼机高精度控制方法,涉及小型无人旋翼机反馈控制、无样本训练的自适应神经网络的构建与优化相结合的复合控制器设计。首先,针对小型无人旋翼机动力学模型,通过极点配置方法构建反馈控制系数矩阵来保证系统的初步稳定性;其次,设计具有自主更新权值特性的自适应神经网络,基于误差信息构建自适应网络权值更新矩阵来在线更新神经网络的权值矩阵,实现对扰动的估计和抑制;并设计自适应阈值优化策略,基于时间窗口内的实际位置与期望位置的误差均方差,对自适应神经网络的控制残差上限阈值进行在线更新,降低控制残差上界不精确对神经网络扰动控制量的影响,进而优化自适应神经网络扰动控制量,实现复杂环境下的小型无人旋翼机高精度姿态控制。本发明具有实时性好、动态参数响应快、对多源干扰适应性强等优点,可用于小型无人旋翼机复杂多源干扰环境下的高精度控制。
搜索关键词: 一种 基于 自适应 神经网络 小型 无人 旋翼机 高精度 控制 方法
【主权项】:
1.一种基于自适应神经网络的小型无人旋翼机高精度控制方法,其特征在于实现以下步骤:(1)针对小型无人旋翼机动力学模型,通过极点配置方法构建反馈控制系数矩阵来保证系统的初步稳定性;(2)对飞行中存在的多源干扰,设计具有自主更新权值特性的自适应神经网络,基于误差信息构建自适应网络权值更新矩阵来在线更新神经网络的权值矩阵,实现对小型无人旋翼机在飞行中所受多源干扰进行在线估计,自适应神经网络权值更新矩阵和扰动估计量表达式如下:其中,为自适应神经网络的权值矩阵,为自适应神经网络的扰动估计量;Γi、P为对称正定矩阵,自适应神经网络的输入e=x‑xd为期望状态变量xd和实际状态变量x间的误差,B为小型无人旋翼机控制状态转移矩阵,αw为自适应神经网络的控制残差上限阈值,i*为相应矩阵的第i个行向量,*i为相应矩阵的第i个列向量,s(e)为自适应神经网络隐含层的节点函数,定义为高斯函数,其相应第j个隐含层的节点函数表达式如下:其中,μj,分别为自适应神经网络隐含层高斯函数的中心值和宽度,l为自适应神经网络隐含层的隐含节点数;(3)设计自适应阈值优化策略,基于时间窗口内的实际位置与期望位置的误差均方差,对自适应神经网络的控制残差上限阈值进行在线更新,实现复杂环境下的小型无人旋翼机高精度姿态控制。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201310347956.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top