[发明专利]废塑料裂解炉余热烘干装置压力控制方法有效
申请号: | 201310281209.5 | 申请日: | 2013-07-05 |
公开(公告)号: | CN103345161A | 公开(公告)日: | 2013-10-09 |
发明(设计)人: | 陈云;谭立华;周绍生 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | G05B13/04 | 分类号: | G05B13/04 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 杜军 |
地址: | 310018 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种废塑料裂解炉余热烘干装置压力控制方法。现在的烘干装置压力控制基本上采用传统的开环控制方式,甚至是手动的操作手段,控制参数的调节完全依赖于技术人员的经验。另外,现有基于状态空间的预测控制方法,通常采用无限时间域内渐近收敛的观测器进行系统状态估计,估计误差难以在有限时间域内收敛,因此估计精度和收敛速度有待提高。本发明采用预测控制方法进行生活垃圾废塑料裂解炉余热烘干装置的压力控制,首次设计了有限时间域内收敛的观测器,对系统状态向量进行估计用于压力输出值的预测,并通过基于递归神经网络的优化方法进行优化求解,从而提高余热烘干装置压力控制的精确性和快速性。 | ||
搜索关键词: | 塑料 裂解炉 余热 烘干 装置 压力 控制 方法 | ||
【主权项】:
1. 废塑料裂解炉余热烘干装置压力控制方法,其特征在于该方法的具体步骤是:步骤1. 建立系统的预测模型,具体是:首先,以生活垃圾废塑料裂解炉余热烘干装置的高温烟气阀阀门开度值、冷气阀阀门开度值、烘干机转速和废塑料进料量为输入控制量,以高精度数字式压力测量仪采集到的余热烘干装置的压力值为输出量,通过系统辨识方法,建立余热烘干装置压力控制系统的离散时间传递函数模型
其中
为k时刻由高精度数字式压力测量仪采集所得的烘干气体压力值;
为k时刻的控制输入变量,其中
表示k时刻高温烟气阀阀门开度值,
表示k时刻冷气阀阀门开度值,
表示k时刻烘干机转速,
表示k时刻废塑料进料量;
和
表示通过辨识得到的多项式矩阵,其形式为
,
其中
、
表示需要辨识的模型参数,I表示具有合适维数的单位矩阵,
、
表示采样个数;然后,将前述离散时间传递函数模型通过状态空间实现,建立下述基于状态空间描述的烘干装置压力控制系统模型
其中
为系统k时刻的状态向量,
为k时刻控制输入的增量,系数矩阵A、B和C分别为
步骤2. 预测输出值,具体是:由步骤1建立的基于状态空间描述的烘干装置压力控制系统模型,通过迭代计算,可得输出值
其中
为状态向量
的估计值,y(k+j) 表示k+j时刻的输出值,j为不小于1的正整数;令N和Nu分别表示预测时域和控制时域,则可将预测输出的状态空间模型表示为如下形式
其中![]()
上式中
为k+s时刻输出量的估计值,且
;由上式知,对输出量的预测依赖于系统状态向量的估计值
,状态估计的准确性及收敛速度将直接影响输出值y的预测;步骤3.有限时间域状态估计,具体是:对于可观的矩阵对
,设计两个观测器
其中z1(k)和z2(k)分别为k时刻两个观测器的状态向量,L1、L2为待设计的观测器增益矩阵;引入滞后时间d,d为正整数,并记
,则
其中
则有
若初始状态为
,及
,可得
由于
和
,当k=d时,
对于废塑料余热烘干装置压力控制系统,选择绝对值大于零且小于1的实数标量
;利用标准的极点配置方法,设计矩阵L1,将
的极点配置为
,此即M1的模小于1;时矩阵M1稳定,则存在非奇异矩阵
,将
做相似变换,得
类似的,再设计矩阵L2,使
,其中标量α满足0<α<1,则可将
的极点配置为
,且有
上式表明,对任意有限大小的正整数d,
,即矩阵
可逆,系统状态向量
的估计误差将在任意的有限时间步长k=d时收敛至零;步骤4.建立性能指标,具体是:建立二次型优化目标函数
其中Q和R为压力预测输出和控制量的加权矩阵;根据实际生活垃圾废塑料裂解炉余热烘干装置压力控制系统特性,建立约束条件
其中
分别表示实际余热烘干装置控制输入量和压力值的下限和上限;考虑到步骤2建立的系统方程
,优化问题可表示为
其中
且
,
,
,
;利用基于递归神经网络的优化方法求解上述二次规划问题,提高在线优化求解的速度;步骤5.动态优化求解,具体是:将步骤4建立的二次优化问题利用递归神经网络进行迭代优化求解;首先,建立动态方程
其中ξ(t)是递归神经网络的状态向量,γ>0是常数,矩阵H由步骤4给出,Pξ的定义如下
然后,利用下述优化方法进行求解:1)系统初始化;令k=1,设定求解时间上限Km、预测时域N、控制时域Nu、采样时间t、加权矩阵Q和R及每一次采样时刻的递归神经网络优化计算时间△t,获得系统模型的状态变量x(k);2)计算递归神经网络参数;由被控系统模型和前述神经网络动态模型计算F、G、H、a和H-1,计算H-1a和控制变量的下限
和上限;3)递归神经网络动态优化;根据上一步计算所得的参数值,递归神经网络开始运行求解,△t时间后停止,获得稳态值U*,即为最优的控制输入;4)预测输出值;将上一步求解的U*的第一个分量,即
对应的最优值的第一个分量
,作为系统的控制变量,并计算下一步的状态变量x(k+1);5)若k<Km,则令k=k+1,返回第2)步循环计算,否则优化过程运行结束。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310281209.5/,转载请声明来源钻瓜专利网。
- 上一篇:一种短信系统
- 下一篇:效果好的医用保健型耳钉