[发明专利]基于概率图模型的服务组件可靠性在线时间序列预测方法有效

专利信息
申请号: 201310141453.1 申请日: 2013-04-22
公开(公告)号: CN103197983A 公开(公告)日: 2013-07-10
发明(设计)人: 王红兵;王磊 申请(专利权)人: 东南大学
主分类号: G06F11/00 分类号: G06F11/00
代理公司: 南京瑞弘专利商标事务所(普通合伙) 32249 代理人: 杨晓玲
地址: 211189 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于概率图模型的服务组件可靠性在线时间序列预测方法,包括如下步骤:(1)motifs发现过程;(2)使用发现的motifs标注服务组件的各个历史参数;(3)通过DBNs模型学习构建CPT;(4)DBNs模型推理并开展基于系统实时参数的在线预测。本发明提供的基于概率图模型的服务组件可靠性在线时间序列预测方法,能够有效解决面向服务的组件级系统在线可靠性时间序列预测的问题,对服务计算领域软件质量保障问题提供一种有效的解决方案,为我国开展大规模复杂软件系统的应用提供支撑,解决了自主计算领域有关Self-*的相关研究中最为核心的一个问题。
搜索关键词: 基于 概率 模型 服务 组件 可靠性 在线 时间 序列 预测 方法
【主权项】:
基于概率图模型的服务组件可靠性在线时间序列预测方法,其特征在于:包括如下步骤:(1)motifs发现过程:寻找历史参数中响应时间RT、吞吐量T和可靠性R三组参数中的motifs;记响应时间RT的motifs为RT_motifs(i)、i=1,2,...,nRT,吞吐量T的motifs为T_motifs(j)、j=1,2,...,nT,可靠性R的motifs为R_motifs(k)、k=1,2,...,nR;其中,motifs表示系统历史参数时间序列数据中出现次数大于某一阈值的系统参数的特征子序列,采用基于时间序列数据相似度的方法确定motifs;(2)使用发现的motifs标注服务组件的各个历史参数:首先将历史参数的每个时间序列分别以与该时间序列包含的特征子序列相似度最大的motifs进行标注,具体为将响应时间RT的每个时间序列分别以与该时间序列包含的特征子序列相似度最大的motifs进行标注,将吞吐量T的每个时间序列分别以与该时间序列包含的特征子序列相似度最大的motifs进行标注,将可靠性R的每个时间序列分别以与该时间序列包含的特征子序列相似度最大的motifs进行标注;然后通过历史参数的标注结果统计历史参数的变化规律;(3)通过DBNs模型学习构建CPT:基于历史参数的变化规律,构建面向成员系统可靠性R预测的DBNs模型,以相应参数的motifs标注作为DBNs网络中节点的参数,并对网络节点参数开展学习以构建DBNs模型中各节点的条件概率表CPT;(4)DBNs模型推理并开展基于系统实时参数的在线预测:根据实时采集的响应时间RT和吞吐量T,通过CPT计算子节点的概率分布,实现对未来可靠性R时间序列的预测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201310141453.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top