[发明专利]基于变化检测和帧差累积的视频对象分割方法有效
申请号: | 201210402443.4 | 申请日: | 2012-12-28 |
公开(公告)号: | CN102970528A | 公开(公告)日: | 2013-03-13 |
发明(设计)人: | 祝世平;高洁 | 申请(专利权)人: | 北京航空航天大学 |
主分类号: | H04N7/26 | 分类号: | H04N7/26;G06T7/00;G06T5/00 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 100191*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于变化检测和帧差累积的视频对象分割方法,首先使用t显著性检验检测间隔为k帧的对称帧的帧间变化,再对检测出的初始运动变化区域通过时域定区间帧差累积计算,并进一步整合形成记忆掩膜;而后使用基于不连续性检测的Kirsch边缘检测算子通过图像边缘连续性检测来调节阈值,从而得到当前帧中连通的所有边缘信息;接着通过时空滤波器获得语义视频对象平面;最终选择性的应用填充及形态学处理操作实现视频对象的分割。这是一种新的视频对象分割方法,它的提出有效地解决了视频对象分割方法经常出现的对象不规则运动造成的视频对象内部缺失和背景显露。分割速度、分割效果、适用范围及可移植性均有了很大的改善。 | ||
搜索关键词: | 基于 变化 检测 累积 视频 对象 分割 方法 | ||
【主权项】:
一种基于变化检测和帧差累积的视频对象分割方法,该视频对象分割方法的特征在于:时域分割利用t显著性检验检测帧间变化,不需要根据繁琐的实验数据设定阈值,根据t分布表查找获得最优阈值,不需要知道视频内噪声的方差,因此避免了噪声参数的估计;在帧差累积阶段提出了有效模板和记忆掩膜的概念和两者的使用及其形成方法;空域分割利用改进的Kirsch边缘检测算子即基于不连续性检测的Kirsch算子获得完整精细的连通边缘,该视频对象分割方法的具体步骤如下:步骤一:利用高斯滤波平滑视频序列各帧图像,使用t显著性检验检测间隔为k帧的对称帧的帧间变化获得各帧初始运动变化区域,再对检测出的初始运动变化区域进行相与操作获得完整运动变化区域,而后采取时域定区间帧差累积计算,获得定时段有效模板,并进一步整合形成记忆掩膜,完成视频对象的时域分割;步骤二:对原始视频的每一帧采用改进的Kirsch边缘检测算子即基于不连续性检测的Kirsch算子进行边缘检测;二值化边缘检测的结果完成视频对象的空域分割;步骤三:采用并行时空融合的方式将由步骤一中形成的分段记忆掩膜与视频序列的每一帧通过步骤二中得到的二值化边缘检测结果进行相与操作提取出运动对象的精确边界轮廓;根据边界信息选择性的进行形态学开闭及填充操作完成视频对象的提取。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201210402443.4/,转载请声明来源钻瓜专利网。