[发明专利]一种基于自适应神经网络的视频传输丢包恢复方法无效

专利信息
申请号: 201110341336.0 申请日: 2011-11-02
公开(公告)号: CN102413378A 公开(公告)日: 2012-04-11
发明(设计)人: 柳毅;王晓耘;周涛;刘大为 申请(专利权)人: 杭州电子科技大学
主分类号: H04N21/647 分类号: H04N21/647
代理公司: 杭州求是专利事务所有限公司 33200 代理人: 杜军
地址: 310018 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于自适应神经网络的视频传输丢包恢复方法。现有的网络传输中使用的协议低层有纠错码,但只能解决包内误码,无法解决丢包问题。本发明首先视频信息作为当前环境的状态输入,输出在这些输入状态下应该使用的视频编码码率。其主要的网络丢包模型使用了基于反向传播自适应神经网络的AHC模型。学习过程中,Critic接受环境的奖励反馈,更新Value(x),并将奖励预测误差以外界反馈的形式交给Actor模块,用于指导Actor纠正选取动作的策略。本发明有效降低网络丢包对IP视频呼叫的影响,提高视频互动的稳定性。
搜索关键词: 一种 基于 自适应 神经网络 视频 传输 恢复 方法
【主权项】:
1.一种基于自适应神经网络的视频传输丢包恢复方法,其特征在于该方法包括以下步骤:步骤1.选择视频丢包恢复模型的输入变量和输出变量,确定训练样本;具体方法为: 输入变量包括三类网络参数信息及视频信息,所述的三类网络参数信息分别是4个时延状态值、4个抖动状态值、1个丢包率状态值;所述的视频信息为6个帧复杂度状态值, 输出变量为使用的视频编码码率;步骤2.数据归一化处理,对输入和输出序列中的数据进行归一化处理,具体是对时延、抖动和帧复杂度的状态变量参数进行规格化处理,转化为[0, 1]范围的值;步骤 3.视频传输网络丢包模型使用了基于反向传播自适应神经网络的AHC模型(Actor-Critic模型),具体方法是:通过使用三个神经网络分别用来拟合Critic中的Value(x)、Actor中的μ(x)和α(x),其中μ(x)和α(x)分别表示输出值的均值和标准差;所述的Actor负责产生当前状态条件下的一个动作;所述的Critic则负责学习预测当前状态条件下可能得到的奖励;所述的Value(x)为Critic对环境奖励进行预测的函数;三个神经网络的输入相同,都是规格化之后的变量状态值,输入层共有15个输入单元为Inputl-Inputl5;每个神经网络有一个隐层,隐层有三个神经元组成为Hiden1-Hiden3;输出层有一个输出神经元为Out;网络中的每个神经元的门限函数使用的是可微的sigmoid函数;步骤4.训练BP神经网络的学习过程中;具体方法是:在时刻t-1时Actor选择一个码率,而后会收到环境的反馈奖励信息,此处即是校正后的视频质量信息;此时Critic需要使用Q-learning更新规则,更新自己的奖励预测函数;Q-learning更新规则是预测函数在时刻t-1时预测的偏差,下式所示其中rt-1是时刻t-1的动作所收到的奖励,Valuet与Valuet-1分别为时刻t与t-1时Critic对所处环境进行评估后函数Value(x)的输出值,γ是一个学习参数;上式使用预测函数Value(x)当前的预测值来代替将来可以获得的奖励的实际值,然后加上由时刻t-1到时刻t之间所得的奖励,就是时刻t-1时应该得到的奖励;步骤5.测试BP神经网络; 对训练完成的BP神经网络进行测试,将历史数据按照步骤(1)中的网络参数信息以及视频信息组成输入信息,再按照步骤(2)进行归一化处理,这样经过规格化后共得到14个输出数据,另外加上丢包率,共有15个Input分别与outl-outl5相对应;按照步骤(3)直接调用MatLab神经网络工具箱中的sim函数,对测试矩阵进行仿真,其中网络中每个神经元的门限函数都是可微的Sigmoid函数,对应为视频传输网络的丢包预测值;步骤6.数据反归一化处理;输出即为当前状态下的视频码率值进行反归一化处理,使用服从均值为μ(x)、标准差为α(x)的高斯分布随机数发生器来产生输出值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201110341336.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top