[发明专利]反应合成Ti5Si3颗粒梯度增强铸造铝基复合材料的制备方法无效
| 申请号: | 200810050260.4 | 申请日: | 2008-01-16 |
| 公开(公告)号: | CN101219470A | 公开(公告)日: | 2008-07-16 |
| 发明(设计)人: | 姜启川;王慧远;关庆玲;李世龙;孙拴利;王鹏建;张伟娜;梁云虹;刘畅 | 申请(专利权)人: | 吉林大学 |
| 主分类号: | B22D19/02 | 分类号: | B22D19/02;B22D27/18;B22F1/00;B22F3/02 |
| 代理公司: | 长春吉大专利代理有限责任公司 | 代理人: | 朱世林 |
| 地址: | 130012吉*** | 国省代码: | 吉林;22 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明涉及颗粒增强金属基复合材料的制备方法,特别是涉及金属间化合物颗粒梯度增强铝基复合材料的制备方法。具体工艺包括反应物压坯的制备和铸型内的燃烧合成反应两个阶段:1)采用Cu、Ti和Si粉作为反应物,按照一定比例混合均匀,压制成坯;2)将经过预处理后的反应物压坯放置于铸型内铸件需要强化的特定位置或区域,浇铸高温铝液诱发压坯的燃烧合成反应,原位形成Ti5Si3金属间化合物增强颗粒。由于金属间化合物颗粒反应形成,其表面洁净,与基体结合良好;此外,压坯中添加的Cu既可以作为合金元素固溶于基体进行合金强化,也可以和基体Al反应形成Al2Cu起到强化作用。本发明工艺简单可靠,易于推广应用。 | ||
| 搜索关键词: | 反应 合成 ti sub si 颗粒 梯度 增强 铸造 复合材料 制备 方法 | ||
【主权项】:
1.一种反应合成Ti5Si3金属间化合物颗粒梯度增强铝基复合材料的制备方法,其特征在于工艺过程包括反应物压坯的制备和铸型内的燃烧合成反应原位形成金属间化合物增强颗粒两个阶段:(1)反应物压坯的制备:a.压坯组成:压坯由粉料粒度小于50微米的Cu、Ti和Si粉组成,其中Cu粉的含量为摩尔百分比10%≤Cu≤40%,Ti和Si粉的比例按摩尔比为Ti∶Si=5∶3;b.混料:将上述配制好的Cu、Ti和Si粉装入球磨混料机中,混料6±1小时,使之混合均匀;c.压制成型:把混合均匀的粉体放入模具中,在室温下压制成坯,压坯密度为压坯理论密度的66±3%;(2)原位金属间化合物增强颗粒的形成:a.预处理:将反应物压坯放入真空或有氩气保护的烘干炉内,加热至350±100℃,烘干除气4±1小时,b.原位金属间化合物增强颗粒的形成:将预处理后的压坯置于铸型内铸件需要增强的特定区域或位置,随后将820±30℃高温铸造铝合金溶液浇注到铸型内,引燃压坯内的燃烧合成反应,形成Ti5Si3金属间化合物增强颗粒,从而制备出原位Ti5Si3金属间化合物颗粒梯度增强铸造铝基复合材料。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于吉林大学,未经吉林大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/200810050260.4/,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法





