[发明专利]顾及极化统计特性的非监督域自适应网络极化SAR地物分类方法及设备有效
申请号: | 202110348030.1 | 申请日: | 2021-03-31 |
公开(公告)号: | CN113269024B | 公开(公告)日: | 2022-04-26 |
发明(设计)人: | 汪长城;李倩;沈鹏;高晗 | 申请(专利权)人: | 中南大学 |
主分类号: | G06V20/00 | 分类号: | G06V20/00;G06V10/762;G06V10/82;G06K9/62;G06N3/04 |
代理公司: | 长沙市融智专利事务所(普通合伙) 43114 | 代理人: | 熊开兰 |
地址: | 410083 湖南*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种顾及极化统计特性的非监督域自适应网络极化SAR地物分类方法及设备,其方法为:选取带标签和不带标签的极化SAR数据计算生成协方差矩阵,分别作为源域和目标域数据集;使用源域样本初始化源域及目标域的聚类中心;将源域和目标域数据输入至各自对应的复卷积神经网络,得到重构特征;通过计算重构特征与聚类中心的距离,为目标域样本确定伪标签,并更新目标域的聚类中心;重复聚类迭代,直到聚类迭代收敛或达到聚类最大迭代次数;通过最小化目标函数,迭代更新两个复卷积神经网络的参数,直到网络参数收敛,此时目标域数据集各样本类别即为最终地物类别。本发明可高效对极化SAR数据进行地物分类。 | ||
搜索关键词: | 顾及 极化 统计 特性 监督 自适应 网络 sar 地物 分类 方法 设备 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南大学,未经中南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110348030.1/,转载请声明来源钻瓜专利网。