[发明专利]一种边-云协同的深度神经网络模型训练方法在审
申请号: | 202110306836.4 | 申请日: | 2021-03-23 |
公开(公告)号: | CN113033653A | 公开(公告)日: | 2021-06-25 |
发明(设计)人: | 田贤忠;朱娟;许婷 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 杭州斯可睿专利事务所有限公司 33241 | 代理人: | 王利强 |
地址: | 310014 浙江省*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种边‑云协同的深度神经网络模型训练方法,先由中心云训练得到一个普适化模型,随后将该模型迁移到边缘服务器上,边缘服务器对该普适化模型进行微调和再训练,微调的方式是冻结普适化模型除最后一层以外的所有神经网络层的参数,再修改最后一层全连接层的参数(主要通过修改神经元的个数实现),然后以自身的个性化数据为训练数据集,再训练该普适化模型,得到一个能够表征当前场景个性化特点的且准确率更高的个性化DNN模型。本发明提升模型预测准确率。 | ||
搜索关键词: | 一种 协同 深度 神经网络 模型 训练 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110306836.4/,转载请声明来源钻瓜专利网。