[发明专利]基于结构化代理的深度度量学习方法和装置有效
申请号: | 202110215067.7 | 申请日: | 2021-02-25 |
公开(公告)号: | CN112801208B | 公开(公告)日: | 2023-01-03 |
发明(设计)人: | 周杰;鲁继文;郑文钊;张博睿 | 申请(专利权)人: | 清华大学 |
主分类号: | G06V10/774 | 分类号: | G06V10/774;G06V10/82;G06N3/04;G06N3/08 |
代理公司: | 北京清亦华知识产权代理事务所(普通合伙) 11201 | 代理人: | 韩海花 |
地址: | 10008*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出一种基于结构化代理的深度度量学习方法和装置,其中,方法包括:获取多个样本图像集;提取多个样本图像集中每个样本图像的图像特征向量;根据预设的结构化损失函数对多个样本图像集中所有样本图像的图像特征向量计算,获取计算结果;根据梯度下降算法和计算结果筛选出每个样本图像集中的代理样本图像;根据所有的代理样本图像训练预设的深度卷积网络,并根据训练好的深度卷积网络提取目标图像在度量空间中的目标特征向量,以便于根据目标特征向量确定目标图像与其他图像的相似性。由此,解决了现有深度度量学习技术中构建代理时使用信息不充分的问题。 | ||
搜索关键词: | 基于 结构 代理 深度 度量 学习方法 装置 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110215067.7/,转载请声明来源钻瓜专利网。