[发明专利]一种特征权重自适应学习的脑电情绪识别方法有效

专利信息
申请号: 202110075007.X 申请日: 2021-01-20
公开(公告)号: CN112773378B 公开(公告)日: 2022-05-17
发明(设计)人: 彭勇;朱琦;张怿恺 申请(专利权)人: 杭州电子科技大学
主分类号: A61B5/369 分类号: A61B5/369;A61B5/378;A61B5/38;A61B5/16;A61B5/00;A61B5/372;A61B5/374;G06K9/00
代理公司: 杭州君度专利代理事务所(特殊普通合伙) 33240 代理人: 黄前泽
地址: 310018 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种特征权重自适应学习的脑电情绪识别方法。本发明步骤如下:1、多个被试者分别在不同的情绪类别任务下进行脑电数据采集。2、对步骤1所得的所有脑电数据进行预处理和特征提取。3、建立机器学习模型以实现特征权重自适应学习的脑电情绪识别。4、求得特征权重因子Θ、特征权重W和偏差b。5、对新的被试者脑电的数据进行情绪类别预测。本发明优化GFIL模型后,获得的特征权重因子为我们提供了执行特征排名和选择的有效工具,然后可以删除多余且次要的特征。本发明将得到的特征权重因子与人情绪识别相关联可以得出情绪识别中频段和导联重要性的判断。
搜索关键词: 一种 特征 权重 自适应 学习 情绪 识别 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110075007.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top