[发明专利]基于对比学习的自监督图像分类方法有效
申请号: | 202011134658.3 | 申请日: | 2020-10-21 |
公开(公告)号: | CN112381116B | 公开(公告)日: | 2022-10-28 |
发明(设计)人: | 林志贤;彭祎祺;周雄图;张永爱;林珊玲 | 申请(专利权)人: | 福州大学;闽都创新实验室 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/774;G06V10/82;G06N3/04;G06N3/08 |
代理公司: | 福州元创专利商标代理有限公司 35100 | 代理人: | 陈明鑫;蔡学俊 |
地址: | 350108 福建省福州市*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于对比学习的自监督图像分类方法,包括以下步骤:步骤S1:获取无标签数据,并进行随机增强生成不同视图;步骤S2:对视图进行特征提取,无监督对比计算损失,得到无监督分类模型C1;步骤S3:对无标签数据中部分进行人工标注,作为训练验证集;步骤S4:将C1作为预训练模型,根据训练验证集进行微调;步骤S5:提取训练验证集的特征,有监督对比计算损失,得到C2;步骤S6:根据C2对无标签数据预测标签,并筛选置信度高于预设值的数据作为训练样本;步骤S7:基于训练样本,将C2作为预训练模型,选取小网络进行训练微调,将验证输出准确率最高的作为最佳分类模型C3。本发明能够有效利用无标签数据训练泛化的图像分类模型,解决多类图像分类问题。 | ||
搜索关键词: | 基于 对比 学习 监督 图像 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福州大学;闽都创新实验室,未经福州大学;闽都创新实验室许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011134658.3/,转载请声明来源钻瓜专利网。
- 上一篇:一种低成本冷轧低碳搪瓷钢及其制造方法
- 下一篇:一种智能止血带装置