[发明专利]一种基于粗糙集和深度置信神经网络的建筑能耗预测方法有效
申请号: | 202010622331.4 | 申请日: | 2020-06-30 |
公开(公告)号: | CN111753470B | 公开(公告)日: | 2022-09-16 |
发明(设计)人: | 雷蕾;陈威;王宁;吴冰;郑皓;林鑫;夏源利 | 申请(专利权)人: | 桂林电子科技大学 |
主分类号: | G06F30/27 | 分类号: | G06F30/27;G06N3/04;G06N3/08;G06Q10/04;G06Q50/06 |
代理公司: | 南宁胜荣专利代理事务所(特殊普通合伙) 45126 | 代理人: | 关文龙 |
地址: | 541004 广西壮族自*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于粗糙集和深度置信神经网络的建筑能耗预测方法,包括以下步骤,步骤一:进行用于粗糙集约简建筑能耗影响因子的数据实测,确定各能耗等级的数值范围;步骤二:利用粗糙集对建筑能耗影响因子进行属性约简预处理;步骤三:进行用于深度神经网络预测建筑能耗的样本数据实测;步骤四:叠加受限玻尔兹曼机,构建深度置信神经网络对训练样本进行学习训练;步骤五:利用Matlab软件将经过属性约简后剩余的重要建筑能耗影响因子作为深度置信神经网络的输入参数,建筑能耗作为深度置信神经网络的输出,进行建筑能耗预测。本发明解决了传统建筑能耗预测方法中准确性不够和实用性不足的问题,为建筑能耗的预测提供了一种新的方法。 | ||
搜索关键词: | 一种 基于 粗糙 深度 置信 神经网络 建筑 能耗 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林电子科技大学,未经桂林电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010622331.4/,转载请声明来源钻瓜专利网。