[发明专利]一种基于半监督学习进行图像标注方法在审

专利信息
申请号: 202010589985.1 申请日: 2020-06-24
公开(公告)号: CN111738343A 公开(公告)日: 2020-10-02
发明(设计)人: 宫恩来;杭丽君;熊攀;何远彬;沈磊;丁明旭;张尧 申请(专利权)人: 杭州电子科技大学
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 浙江永鼎律师事务所 33233 代理人: 陆永强
地址: 310018*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了基于半监督学习进行图像标注方法,针对不同类别的样本设计不同的分类器,利用已经标注好的部分样本来训练分类器,并且对不同分类器的结果进行投票,选择出准确率最高的类别,从而对未知样本进行标注。并且为了降低错误分类带来的影响,将分类器得到的每一个类别中的样本与标注的相应类别中的样本进行随机线性混合操作,使得错误分类的结果中也含有对应类别的特征,为半监督学习用于深度学习以及机器学习领域提供了新的思路。
搜索关键词: 一种 基于 监督 学习 进行 图像 标注 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010589985.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top