[发明专利]一种基于特征融合深度神经网络的多光谱行人检测方法在审

专利信息
申请号: 202010573215.8 申请日: 2020-06-22
公开(公告)号: CN111898427A 公开(公告)日: 2020-11-06
发明(设计)人: 耿杰;周书倩;蒋雯;邓鑫洋;孙祎芸;田欣雨;杨艺云;宋丽娜 申请(专利权)人: 西北工业大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/46;G06K9/62;G06N3/04;G06N3/08
代理公司: 北京科亿知识产权代理事务所(普通合伙) 11350 代理人: 汤东凤
地址: 710072 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于特征融合深度神经网络的多光谱行人检测方法,包括以下步骤:步骤一、分别提取多光谱图像的特征信息;步骤二、特征信息融合得到第三张量;步骤三、对第三张量进行卷积操作,得到第四张量;步骤四、改进Faster R‑CNN网络作为行人检测模型;步骤五、将第四张量输入到改进后的Faster R‑CNN算法中,输出行人检测结果。本发明结构简单、设计合理,融合可见光图像和红外图像的特征信息形成互补,采用focal loss损失函数改进Faster R‑CNN算法中RCNN的交叉熵损失函数,不仅解决正负样本不平衡的问题,而且合理度量难分类和易分类样本,采用KL loss损失函数改进Faster R‑CNN算法的边框回归损失函数,降低边界框回归器在模糊边界框上的损失。
搜索关键词: 一种 基于 特征 融合 深度 神经网络 光谱 行人 检测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010573215.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top