[发明专利]基于混合隐马尔可夫模型的原子事件标签的提取方法在审

专利信息
申请号: 201810649233.2 申请日: 2018-06-22
公开(公告)号: CN109086306A 公开(公告)日: 2018-12-25
发明(设计)人: 叶伟静;张文杰;梅峰;卢新岱;姚一杨;戴波;王彦波 申请(专利权)人: 国网浙江省电力有限公司;国网浙江省电力有限公司信息通信分公司
主分类号: G06F17/30 分类号: G06F17/30
代理公司: 杭州华鼎知识产权代理事务所(普通合伙) 33217 代理人: 项军
地址: 310000*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及原子事件标签的提取方法,尤其涉及基于混合隐马尔可夫模型的原子事件标签的提取方法,包括以下步骤:预处理:获取训练语料库中的原子事件标签;对每个单词添加词性标签;对每个单词添加相应位置标签;将原子事件标签、词性标签和相应位置标签映射到一个隐藏状态序列中;将词性标签和相应位置标签映射到一个观测状态序列中;模型训练:建立二阶HMM模型;提取阶段:根据最优观测状态序列提取原子事件标签。通过使用本发明,可以实现以下效果:对词性和单词的相应位置进行考虑,提取准确度高;考虑到隐藏状态序列中的前后隐藏状态之间的关系,提高了提取的准确度;在原子事件标签提取之后进行检测和纠错,提高了提取的准确度。
搜索关键词: 原子事件 标签 词性 准确度 位置标签 隐藏状态 单词 隐马尔可夫模型 状态序列 映射 观测 预处理 训练语料库 标签提取 模型训练 二阶 纠错 检测
【主权项】:
1.基于混合隐马尔可夫模型的原子事件标签的提取方法,其特征在于,包括以下步骤:预处理:获取训练语料库中的原子事件标签;将语料库中的所有语句分割为单词,对每个单词添加词性标签;对每个单词在每个语句中的相应位置添加相应位置标签;对于训练语料库,将原子事件标签、词性标签和相应位置标签映射到一个隐藏状态序列中;对于测试语料库,将词性标签和相应位置标签映射到一个观测状态序列中;模型训练:根据隐藏状态序列中的前后隐藏状态以及观测状态序列,建立二阶HMM模型;提取阶段:基于二阶HMM模型,利用Viterbi算法计算得到测试语料库中的最优观测状态序列,根据最优观测状态序列提取词性标签、相应位置标签所对应的原子事件标签。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网浙江省电力有限公司;国网浙江省电力有限公司信息通信分公司,未经国网浙江省电力有限公司;国网浙江省电力有限公司信息通信分公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810649233.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top