[发明专利]一种基于特征选择和集成算法的分类方法在审
申请号: | 201810558775.9 | 申请日: | 2018-06-01 |
公开(公告)号: | CN108921197A | 公开(公告)日: | 2018-11-30 |
发明(设计)人: | 孙文;司华友;金厅;周佳勇;郑飘飘 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N99/00 |
代理公司: | 杭州君度专利代理事务所(特殊普通合伙) 33240 | 代理人: | 王桂名 |
地址: | 310018 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于特征选择和集成算法的分类方法,其特征在于,包括以下步骤:(1)对于已有的数据集S,采用信息增益率和对称不确定性对数据集S的每个特征计算得分,设置阈值并对特征进行筛选,删除得分小于阈值的特征,形成新的数据集S’;(2)用多个学习器对选择特征后的数据集S’进行学习,调整学习器参数,采用调参后的学习器对未知数据u进行训练,计算未知数据u属于各个类别的概率集合,使用平均法和加权投票法对概率集进行集成计算,从而得到未知数据u应分类的类别。本发明从一定程度上降低了单个分类器造成的误差,提高了分类结果的准确率、召回率以及F1值。 | ||
搜索关键词: | 数据集 学习器 集成算法 特征选择 分类 单个分类器 不确定性 分类结果 概率集合 特征计算 信息增益 平均法 投票法 准确率 加权 删除 对称 筛选 概率 学习 | ||
【主权项】:
1.一种基于特征选择和集成算法的分类方法,其特征在于,包括以下步骤:(1)对于已有的数据集S,采用信息增益率和对称不确定性对数据集S的每个特征计算得分,设置阈值并对特征进行筛选,删除得分小于阈值的特征,形成新的数据集S’;(2)用多个学习器对选择特征后的数据集S’进行学习,调整学习器参数,采用调参后的学习器对未知数据u进行训练,计算未知数据u属于各个类别的概率集合,使用平均法和加权投票法对概率集进行集成计算,从而得到数据u应分类的类别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810558775.9/,转载请声明来源钻瓜专利网。