[发明专利]一种基于LSTM深度学习模型的水电机组故障诊断方法与系统有效

专利信息
申请号: 201711463863.2 申请日: 2017-12-28
公开(公告)号: CN108197648B 公开(公告)日: 2020-06-05
发明(设计)人: 李超顺;王若恒;涂文奇;陈昊;陈新彪 申请(专利权)人: 华中科技大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04;G06N3/08;G01R31/34
代理公司: 深圳市六加知识产权代理有限公司 44372 代理人: 严泉玉
地址: 430070 湖北*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于LSTM深度学习模型的水电机组故障诊断方法与系统,该方法包含:获取水电机组的N个不同信号通道的采样序列,对每一个时间序列进行VMD分解得到K个IMF分量;构建相应的训练集和待诊断集;对每一个IMF分量的训练集构建LSTM模型,通过两层的LSTM层来对每一个IMF分量进行特征提取;同一个信号通道的K个LSTM层输出连接到一个Dense层;通过Softmax层对多个Dense层输出进行特征分类;通过RMSProp梯度下降算法对深度学习神经网络模型进行训练,将训练好的模型对待诊断集进行诊断。本发明将变分模态分解VMD相对较好的信噪分离效果与长短期记忆网络LSTM对时间序列的处理优势相结合,有效的提高了水电机组故障诊断的准确度。
搜索关键词: 一种 基于 lstm 深度 学习 模型 水电 机组 故障诊断 方法 系统
【主权项】:
1.一种基于LSTM深度学习模型的水电机组故障诊断方法,其特征在于,方法包括:获取水电机组的N个不同信号通道的采样序列,对每一个时间序列进行变分模态分解,得到K个IMF分量;对每一个IMF分量进行归一化处理,并构建相应的训练集和待诊断集;对每一个IMF分量的训练集构建长短期记忆网络模型,通过至少两层的LSTM层来对每一个本征模态函数进行特征提取;同一个信号通道的K个LSTM层输出连接到一个Dense层,再将N个信号通道的Dense层输出连接到Softmax层来进行分类,并通过交叉熵损失函数与故障标签得到误差来用于训练;通过RMSProp梯度下降算法对深度学习神经网络模型进行训练,将训练好的模型对待诊断集进行诊断,得到最终的诊断结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711463863.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top