[发明专利]遮挡人脸图像的识别装置有效
申请号: | 201711391445.7 | 申请日: | 2017-12-21 |
公开(公告)号: | CN108229348B | 公开(公告)日: | 2020-04-28 |
发明(设计)人: | 赫然;孙哲南;胡一博;李志航 | 申请(专利权)人: | 中国科学院自动化研究所 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京市恒有知识产权代理事务所(普通合伙) 11576 | 代理人: | 郭文浩 |
地址: | 100190 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及图像处理技术领域,具体提供了一种遮挡人脸图像识别装置,旨在解决如何提高遮挡人脸图像的识别准确性的技术问题。为此目的,本发明中图像识别装置的生成对抗网络模型包括解耦网络模块、融合网络模块和优化训练模块。解耦网络模块可以依据遮挡人脸图像,预测清晰人脸图像和遮挡图像。融合网络模块可以为依据预测的清晰人脸图像和遮挡图像,重建新的遮挡人脸图像;以及,依据清晰人脸图像和遮挡图像,预测遮挡人脸图像。基于此,解耦网络模块还可以依据预测的遮挡人脸图像,重建新的清晰人脸图像和遮挡图像。通过上述解耦网络模块与融合网络模块构成的对抗网络,能够得到清晰的人脸图像,进而提高遮挡人脸图像的识别准确性。 | ||
搜索关键词: | 遮挡 图像 识别 装置 | ||
【主权项】:
1.一种遮挡人脸图像的识别装置,其特征在于,所述装置包括生成对抗网络模型,其配置为获取遮挡人脸图像,并对所获取的遮挡人脸图像进行人脸识别;所述生成对抗网络模型包括解耦网络模块、融合网络模块和优化训练模块;所述解耦网络模块,配置为依据所述生成对抗网络模型所获取的遮挡人脸图像,预测清晰人脸图像和遮挡图像,其中,所述遮挡图像为所述遮挡人脸图像中遮挡图形所在的区域,且该区域未包含人脸信息;所述融合网络模块,配置为依据所述解耦网络模块所预测的清晰人脸图像和遮挡图像,重建新的遮挡人脸图像;以及,依据所述生成对抗网络模型获取的清晰人脸图像和遮挡图像,预测遮挡人脸图像;所述解耦网络模块,进一步配置为依据所述融合网络模块所预测的遮挡人脸图像,重建新的清晰人脸图像和遮挡图像;所述优化训练模块,配置为依据预设训练集,并按照下式所示的损失函数L对所述生成对抗网络模型进行网络训练,得到优化后的生成对抗网络模型:L=Lgan+λLcyc其中,所述Lgan为对抗损失函数,所述Lcyc为循环一致性损失函数,所述λ为预设的权重参数;所述对抗损失函数Lgan=LGAN1+LGAN2,所述LGAN1为预设训练集中遮挡人脸图像与所述融合网络模块所预测的遮挡人脸图像之间的对抗损失函数,所述LGAN2为所述预设训练集中清晰人脸图像与所述解耦网络模块所预测的清晰人脸图像之间,以及所述预设训练集中遮挡图像与所述解耦网络模块所预测的遮挡图像之间的对抗损失函数;所述循环一致性损失函数Lcyc=LCYC1+LCYC2,所述LCYC1为预设训练集中遮挡人脸图像与所述融合网络模块所重建的遮挡人脸图像之间的一致性损失函数,所述LCYC2为所述预设训练集中清晰人脸图像与所述解耦网络模块所预测的清晰人脸图像之间,以及所述预设训练集中遮挡图像与所述解耦网络模块所预测的遮挡图像之间的一致性损失函数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所,未经中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711391445.7/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序