[发明专利]目标对象关键点检测方法、深度学习神经网络及装置有效
申请号: | 201711367020.2 | 申请日: | 2017-12-18 |
公开(公告)号: | CN108229343B | 公开(公告)日: | 2020-10-30 |
发明(设计)人: | 刘文韬;钱晨 | 申请(专利权)人: | 北京市商汤科技开发有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04 |
代理公司: | 北京思源智汇知识产权代理有限公司 11657 | 代理人: | 毛丽琴 |
地址: | 100084 北京市海淀区中*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请实施方式公开了一种目标对象关键点检测方法、深度学习神经网络以及装置,其中的目标对象关键点检测方法主要包括:接收待处理图像的特征图;在按照分支网络所对应的指定部位的活动自由度的大小,依次对深度学习神经网络中的各关键点检测分支网络进行排列的情况下,将所述特征图提供给对应指定部位的活动自由度最低的关键点检测分支网络,并将前级关键点检测分支网络输出的关键点预测信息与所述特征图一起提供给后级关键点检测分支网络;根据所述各关键点检测分支网络输出的关键点预测信息确定待处理图像的目标对象关键点。 | ||
搜索关键词: | 目标 对象 关键 检测 方法 深度 学习 神经网络 装置 | ||
【主权项】:
1.一种目标对象关键点检测方法,其特征在于,所述方法包括:接收待处理图像的特征图;在按照分支网络所对应的指定部位的活动自由度的大小,依次对深度学习神经网络中的各关键点检测分支网络进行排列的情况下,将所述特征图提供给对应指定部位的活动自由度最低的关键点检测分支网络,并将前级关键点检测分支网络输出的关键点预测信息与所述特征图一起提供给后级关键点检测分支网络;根据所述各关键点检测分支网络输出的关键点预测信息确定待处理图像的目标对象关键点。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京市商汤科技开发有限公司,未经北京市商汤科技开发有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711367020.2/,转载请声明来源钻瓜专利网。