[发明专利]一种基于热力图和关键点回归的深度车牌检测方法有效

专利信息
申请号: 201711250682.1 申请日: 2017-12-01
公开(公告)号: CN108090423B 公开(公告)日: 2021-06-29
发明(设计)人: 魏丹;王子阳;罗一平;陈浩 申请(专利权)人: 上海工程技术大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/32;G06K9/62;G06N3/04
代理公司: 上海伯瑞杰知识产权代理有限公司 31227 代理人: 曹莉
地址: 201620 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于热力图和关键点回归的深度车牌检测方法,包括离线学习阶段和检测阶段,离线学习阶段包括以下四个步骤:(1)设计网络深度:设计深度学习网络结构,将输入图像调整统一,对图像进行第一层卷积和激活函数操作,再进行第二层卷积、激活函数和池化操作,然后进行第三层卷积、激活函数和池化操作,然后形成多任务分支,一个分支通过一个卷积层学习车牌坐标,另一个分支通过另一个卷积层学习车牌热力图;(2)准备训练样本集:获取一批车头或车尾图像作为离线学习的样本集,样本总类数越多,训练效果越好,并对样本大小统一化;本方法利用离线训练的深度网络表征目标,达到快速、稳定的对目标物进行车牌检测的目的。
搜索关键词: 一种 基于 力图 关键 回归 深度 车牌 检测 方法
【主权项】:
1.一种基于热力图和关键点回归的深度车牌检测方法,包括离线学习阶段和检测阶段,其特征在于:离线学习阶段包括以下四个步骤:(1)设计网络深度:设计深度学习网络结构,将输入图像调整统一,对图像进行第一层卷积和激活函数操作,再进行第二层卷积、激活函数和池化操作,然后进行第三层卷积、激活函数和池化操作,然后形成多任务分支,一个分支通过一个卷积层学习车牌坐标,另一个分支通过另一个卷积层学习车牌热力图;(2)准备训练样本集:获取一批车头或车尾图像作为离线学习的样本集,样本总类数越多,训练效果越好,并对样本大小统一化;(3)进行样本标注:本方法需要进行两种信息的标注,一种是车牌原图中的车牌坐标,另一种是车牌热力图,车牌位置坐标采用人工标注获取,由4个值表示(x,y,w,h),分别表示车牌左上角坐标以及车牌宽和高,这些值都需要进行归一化至(0,1),车牌图像热力图根据车牌坐标自动生成,热力图大小为26×26,新建一个26×26的标注矩阵,初始化为0,在(26x,26y,26w,26h)区域表示车牌位置标注为1,输入的图像涵盖车牌各种位置及车牌种类,使训练的网络能适应复杂情况;(4)进行训练:使用步骤(1)中描述的网络结构对步骤(3)中得到的训练样本集进行多任务训练;检测阶段包括以下四个步骤:(1)输入车辆车牌图像:输入待检测车牌的车辆图像,图像大小为(Wo,Ho);(2)用训练的网络模型进行前向计算:利用训练阶段得到的网络对车牌图像进行前向计算,网络输出坐标值(x',y',w',h'),以及热力图像;(3)设置阀值:设置阈值T,统计热力图区域(26x,26y,26w,26h)中大于阈值T的点个数记为Num;(4)系统进行判断:当Num的占比大于50%,也就是Num大于(26w'×26h'/2)时,表示检测到车牌,然后输出车牌在原图中的位置(Wo·x',Ho·y',Wo·w',Ho·h'),当Num小于(26w'×26h'/2)时,表示网络响应太弱,将该坐标值(x',y',w',h')进行丢弃,然后输出车辆为无牌车。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海工程技术大学,未经上海工程技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711250682.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top