[发明专利]基于代价敏感学习的变压器模糊谨慎推理故障诊断方法有效
申请号: | 201710974847.3 | 申请日: | 2017-10-19 |
公开(公告)号: | CN107958292B | 公开(公告)日: | 2022-02-25 |
发明(设计)人: | 周东华;彭飞;卢晓 | 申请(专利权)人: | 山东科技大学 |
主分类号: | G06Q10/00 | 分类号: | G06Q10/00;G06Q10/06;G06Q50/06;G06F17/16;G06F16/2458;G01R31/00 |
代理公司: | 青岛智地领创专利代理有限公司 37252 | 代理人: | 种艳丽 |
地址: | 266590 山东省青*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于代价敏感学习的变压器模糊谨慎推理故障诊断方法,属于变压器状态评估与故障诊断领域,本发明在获取变压器状态评估初始样本集并设置代价敏感初设矩阵的基础上,首先,结合Sigmoid多属性软化决策,构造变压器故障诊断多分类支持向量矩阵模型;然后,对支持向量矩阵进行归一化有序加权平均,计算模糊谨慎隶属度权重;最后,对加权模糊谨慎隶属度进行基于PCR5方法的互补置信分配与信息融合,并基于信度分配融合终值进行变压器故障诊断决策判定;在此过程中,以误诊断样本数最小为优化目标,基于模糊谨慎证据推理过程迭代修正代价敏感矩阵相应代价惩罚元素,实现所述故障诊断模型的在线学习功能。 | ||
搜索关键词: | 基于 代价 敏感 学习 变压器 模糊 谨慎 推理 故障诊断 方法 | ||
【主权项】:
一种基于代价敏感学习的变压器模糊谨慎推理故障诊断方法,其特征在于,具体包括以下步骤:步骤1:在获取变压器状态评估初始样本集并设置代价敏感初设矩阵的基础上,确定特征输入向量以及变压器故障类别及其表示方法,对多分类支持向量进行矩阵建模,得到多分类支持向量矩阵模型;步骤2:结合Sigmoid概率软化模型对变压器故障诊断多分类支持向量矩阵模型进行软化决策,构造归一化多属性决策矩阵;步骤3:在多属性决策矩阵基础上,构造归一化有序加权平均算子区间,计算模糊谨慎隶属度;步骤4:对通过归一化加权平均得到的模糊谨慎隶属度进行互补置信度分配,通过PCR5方法对信度分配进行信息融合,并基于信度分配融合的终值进行决策判定;步骤5:根据决策判定,对误诊样本类别进行检索归类,在此基础上对代价敏感初始矩阵进行在线惩罚修正,实现代价敏感初始矩阵的在线自校正,并持续反馈进行基于证据推理模糊谨慎有序加权平均的油浸式电力变压器故障诊断决策过程。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东科技大学,未经山东科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710974847.3/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理