[发明专利]基于深度神经网络的多音字读音的判别方法和装置有效
申请号: | 201710876713.8 | 申请日: | 2017-09-25 |
公开(公告)号: | CN107729313B | 公开(公告)日: | 2021-09-17 |
发明(设计)人: | 聂志朋;徐扬凯 | 申请(专利权)人: | 百度在线网络技术(北京)有限公司 |
主分类号: | G06F40/279 | 分类号: | G06F40/279;G06N3/08 |
代理公司: | 北京清亦华知识产权代理事务所(普通合伙) 11201 | 代理人: | 宋合成 |
地址: | 100085 北京市*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请提出一种基于深度神经网络的多音字读音的判别方法和装置,其中,上述基于深度神经网络的多音字读音的判别方法包括:对待识别文本中的每个汉字进行量化编码,生成所述汉字的特征向量;根据汉字的特征向量,结合所述汉字的双方向的上下文信息,生成汉字的输入特征;将所述汉字的输入特征分别输入声母、韵母和声调对应的DNN模型,分别获得第一概率、第二概率和第三概率;根据第一概率、第二概率和第三概率计算声母、韵母和声调的各种组合的概率,以概率最高的组合作为所述汉字的读音。本申请可以提高读音判别的准确性,有效缓解多音字高频音引起的训练样本不均衡的问题,并且可以解决多个多音字的读音判别问题,有利于语音合成系统的集成。 | ||
搜索关键词: | 基于 深度 神经网络 多音字 读音 判别 方法 装置 | ||
【主权项】:
一种基于深度神经网络的多音字读音的判别方法,其特征在于,包括:对待识别文本中的每个汉字进行量化编码,根据所述汉字的量化编码、所述汉字的分词词性和分词边界,以及所述汉字的多音字标识生成所述汉字的特征向量;根据所述汉字的特征向量,结合双向的长短时记忆模型获取的所述汉字的双方向的上下文信息,生成所述汉字的输入特征;将所述汉字的输入特征分别输入声母、韵母和声调对应的深层神经网络模型,分别获得所述汉字的读音的声母对应汉语拼音中每个声母的第一概率、所述汉字的读音的韵母对应汉语拼音中每个韵母的第二概率和所述汉字的读音的声调对应汉语拼音中每个声调的第三概率;根据所述第一概率、所述第二概率和所述第三概率计算所述汉字的读音对应的声母、韵母和声调的各种组合的概率,以概率最高的组合作为所述汉字的读音。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于百度在线网络技术(北京)有限公司,未经百度在线网络技术(北京)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710876713.8/,转载请声明来源钻瓜专利网。
- 上一篇:一种生成信用金的方法和系统
- 下一篇:联名账户处理方法、系统及服务器