[发明专利]一种基于级联分类器的官网识别方法有效
申请号: | 201710642225.0 | 申请日: | 2017-07-31 |
公开(公告)号: | CN107403198B | 公开(公告)日: | 2020-12-22 |
发明(设计)人: | 陈开冉;莫碧云 | 申请(专利权)人: | 广州探迹科技有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 刘巧霞;黄磊 |
地址: | 510000 广东省广州市番*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于级联分类器的官网识别方法,该方法的创新点在于建立一多层级的级联分类器,该分类器的建立方法是将样本集划分为带标签数据集和待预测样本集,根据带标签数据集提取官网特征,训练第一级分类器;将待预测样本集中样本代入第一级分类器,得到预测可信样本和未识别样本,从未识别样本中选取一部分进行人工打标签,根据人工打出标签的样本训练第二级分类器;依次类推,直到最后待预测样本评估准则满足预定的要求。与传统的由多个弱分类器加权组合而成的强分类器相比,级联分类器中每个子分类器以前面分类器的筛选结果作为输入,在每一层级获得的都是强分类器,能达到提高模型训练效率和逐步提高模型整体准确率的效果。 | ||
搜索关键词: | 一种 基于 级联 分类 识别 方法 | ||
【主权项】:
一种基于级联分类器的官网识别方法,其特征在于,建立一多层级的级联分类器,该分类器的建立方法是将样本集划分为带标签数据集和待预测样本集,根据带标签数据集提取官网特征,训练第一级分类器;将待预测样本集中样本代入第一级分类器,得到预测可信样本和未识别样本,从未识别样本中选取一部分进行人工打标签,根据人工打出标签的样本训练第二级分类器;依次类推,直到最后待预测样本评估准则满足预定的要求。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广州探迹科技有限公司,未经广州探迹科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710642225.0/,转载请声明来源钻瓜专利网。
- 上一篇:一种基于深度学习的裂缝识别方法
- 下一篇:数据处理方法和装置