[发明专利]一种基于神经网络的数据库缓存系统及方法有效

专利信息
申请号: 201610877968.1 申请日: 2016-09-30
公开(公告)号: CN106547828B 公开(公告)日: 2019-12-06
发明(设计)人: 孙宇;季家亮 申请(专利权)人: 南京途牛科技有限公司
主分类号: G06F16/2455 分类号: G06F16/2455;G06N3/04
代理公司: 32204 南京苏高专利商标事务所(普通合伙) 代理人: 陈静<国际申请>=<国际公布>=<进入国
地址: 210042 江苏省南京*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于神经网络的数据库缓存系统,包括接入适配模块、分析模块和神经网络;其中:接入适配模块:负责进出数据的适配;分析模块:用于分析用户输入意图;神经网络:包括输入层、隐藏层和输出层;输入层用于接收参数激活隐藏层,隐藏层的每个神经元都包含数据库访问模块、前驱后继神经元路由表、记忆生存周期标识、特征标识和缓存数据集合;输出层用于输出查询结果集至接入适配模块。本发明解决了传统的缓存技术数据无法更新以及缓存状态逐渐恶化造成缓存命中率低的问题,大大提高了缓存的性能和稳定性。解决了传统缓存单一平面的问题,使得子查询相关中间数据可以被缓存,显著减少了数据库多表关联查询的处理时间。
搜索关键词: 一种 基于 神经网络 数据库 缓存 系统 方法
【主权项】:
1.一种基于神经网络的数据库缓存方法,其特征在于:包括以下步骤:/nS1:客户端访问数据库时,通过接入适配模块将数据发送给分析模块;/nS2:分析模块分析SQL语句,并根据其意图、参数以及额外信息生成神经网络能够理解的包含固定特征条件的特征化样本;其中,额外信息包括运行环境信息;/nS3:将步骤S2得到的特征化样本交由神经网络处理,神经网络包括输入层、隐藏层和输出层,其中隐藏层包含起点神经元、中继神经元和终点神经元;/nS4:当操作类型为select时,输入层根据特征化样本中包含的特征条件逐步激活隐藏层神经元,直到输出层输出结果集为止;/nS5:如果特征条件全满足,则直接返回此路径上隐藏层终点神经元已经存在的缓存数据给输出层,并回溯此路径上的所有神经元并将记忆周期加1,再进行步骤S8;如果有特征条件没有被满足,则进行步骤S6;/nS6:对于没有被满足的特征条件,创建一个满足此特征条件的空隐层神经元,并将特征化样本转入新的空隐层神经元处理,之后判断特征化样本中所有的特征条件是否已满足:如果不满足,则循环执行步骤S6,直到特征化样本中所有特征条件满足并到达起点神经元为止,激活起点神经元,路径上神经元的缓存数据反向流动到终点神经元,最后隐藏层终点神经元将最终处理完成的缓存数据返回给输出层;/nS7:当操作类型为insert、update和delete时,神经网络根据特征化样本中包含的特征条件按照S4中的激活方式激活相关已存在的隐藏层神经元,被激活的神经元逐步将其缓存的数据调整至最新状态;/nS8:输出层返回数据给接入适配模块,接入适配模块生成结果集给客户端。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京途牛科技有限公司,未经南京途牛科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610877968.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top