[发明专利]基于自回归模型的雷达信号自适应检测方法有效
申请号: | 201610616198.5 | 申请日: | 2016-07-29 |
公开(公告)号: | CN106019256B | 公开(公告)日: | 2018-09-21 |
发明(设计)人: | 李明;王泽玉;吴艳;陈洪猛;张鹏;左磊 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G01S7/41 | 分类号: | G01S7/41 |
代理公司: | 西安睿通知识产权代理事务所(特殊普通合伙) 61218 | 代理人: | 惠文轩 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: |
本发明公开了一种基于自回归模型的雷达信号自适应检测方法,其思路为:雷达接收N个脉冲的相参脉冲序列,并将所述N个脉冲的相参脉冲序列作为目标的待检测单元回波z0,然后将雷达对目标的检测问题用二元假设检验表示;其中,H0表示z0中只有干扰的假设,H1表示z0中存在目标和干扰的假设,进而分别计算z0和ZK的联合概率密度函数f(z0,ZK|θ)对目标幅度的二维列向量θr的一阶偏导 |
||
搜索关键词: | 基于 回归 模型 雷达 信号 自适应 检测 方法 | ||
【主权项】:
1.一种基于自回归模型的雷达信号自适应检测方法,其特征在于,包括以下步骤:步骤1,雷达接收N个脉冲的相参脉冲序列,并将所述N个脉冲的相参脉冲序列作为目标的待检测单元回波z0,z0∈CN×1,∈表示属于,CN×1表示N×1维复向量,所述N×1维复向量表示雷达接收到的N个脉冲的相参脉冲序列分别为复值,然后将雷达对目标的检测问题用二元假设检验表示:
其中,H0表示目标的待检测单元回波z0中只有干扰的假设,H1表示目标的待检测单元回波z0中存在目标和干扰的假设,p表示雷达接收的N个脉冲相参脉冲序列的导向矢量,且p=[1,ejΩ,...,ej(N‑1)Ω]T,(·)T表示转置符号,Ω表示目标多普勒频率,α表示目标幅度的未知常量,n0表示目标的待检测单元回波z0中包含的干扰,N表示雷达接收到的相参脉冲序列包含的脉冲个数;步骤2,确定存在一组不包含目标的训练数据,该组不包含目标的训练数据包含K个距离单元,并计算得到基于低阶自回归模型的第l个脉冲处的相参脉冲序列n(l);l∈{1,...,N};步骤3,根据基于低阶自回归模型的第l个脉冲处的相参脉冲序列n(l),分别计算只有干扰的假设H0条件下目标的待检测单元回波z0和K个距离单元的训练数据ZK的联合概率密度函数f(z0,ZK|θ,H0),以及存在目标和干扰的假设H1条件下目标的待检测单元回波z0和K个距离单元的训练数据ZK的联合概率密度函数f(z0,ZK|θ,H1);其中,K表示假设的一组不包含目标的训练数据包含的距离单元个数,M表示低阶自回归模型包含的阶数,θ表示待估计参量,所述待估计参量包括目标幅度、M阶自回归模型复的自回归参数向量a和复白高斯噪声的方差σ2;
θr=[αR,αI]T,
αR表示目标幅度的未知常量α的实部,αI表示目标幅度的未知常量α的虚部,θr表示目标幅度的二维列向量,θs表示M阶自回归模型复的自回归参数向量a和复白高斯噪声的方差σ2的2M+1维列向量,
aR=vec(Re{a}),aI=vec(Im{a}),vec(·)表示向量化操作,Re{·}表示取实部操作,Im{·}表示取虚部操作,aR表示M阶自回归模型复的自回归参数向量a的实部,aI表示M阶自回归模型复的自回归参数向量a的虚部,σ2表示复白高斯噪声的方差;步骤4,根据只有干扰的假设H0条件下目标的待检测单元回波z0和K个距离单元的训练数据ZK的联合概率密度函数f(z0,zK|θ,H0),以及存在目标和干扰的假设H1条件下目标的待检测单元回波z0和K个距离单元的训练数据ZK的联合概率密度函数f(z0,zK|θ,H1),分别计算得到目标的待检测单元回波z0和K个距离单元的训练数据ZK的联合概率密度函数f(z0,zK|θ)对目标幅度的二维列向量θr的一阶偏导
以及待估计参量θ的Fisher信息矩阵J(θ)逆的左上分块矩阵
步骤5,根据在目标的待检测单元回波z0中只有干扰的假设H0条件下目标的待检测单元回波z0和K个距离单元的训练数据ZK的联合概率密度函数f(z0,ZK|θ,H0),计算复白高斯噪声的方差σ2的最大似然估计
步骤6,根据复白高斯噪声的方差σ2的最大似然估计
以及在目标的待检测单元回波z0中只有干扰的假设H0条件下目标的待检测单元回波z0和K个距离单元的训练数据ZK的联合概率密度函数f(z0,zK|θ,H0),计算M阶自回归模型复的自回归参数向量a的最大似然估计
步骤7,设定基于Rao检测器方法的自回归模型的检测门限为ηAR‑Rao,并根据复白高斯噪声的方差σ2的最大似然估计
M阶自回归模型复的自回归参数向量a的最大似然估计值
目标的待检测单元回波z0和K个距离单元的训练数据ZK的联合概率密度函数f(z0,ZK|θ)对目标幅度的二维列向量θr的一阶偏导
以及待估计参量θ的Fisher信息矩阵J(θ)逆的左上分块矩阵
计算得到目标的待检测单元回波z0中基于自回归模型的目标检测表达式TR;然后将所述基于自回归模型的目标检测表达式TR的值与设定的基于Rao检测器方法的自回归模型的检测门限ηAR‑Rao作比较:如果所述基于自回归模型的目标检测表达式TR的值大于所述检测门限ηAR‑Rao,则存在目标和干扰的假设H1成立,即目标的待检测单元z0中存在目标;反之,则只有干扰的假设H0成立,即目标的待检测单元z0中没有目标。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610616198.5/,转载请声明来源钻瓜专利网。