[发明专利]单状态变量和两级Kalman滤波器时间尺度算法有效
申请号: | 201610386951.6 | 申请日: | 2016-06-02 |
公开(公告)号: | CN106100609B | 公开(公告)日: | 2018-08-31 |
发明(设计)人: | 刘增军;伍贻威;欧钢;龚航;朱祥维;彭竞;徐博;吴鹏;李蓬蓬 | 申请(专利权)人: | 中国人民解放军国防科学技术大学 |
主分类号: | H03H21/00 | 分类号: | H03H21/00 |
代理公司: | 北京中济纬天专利代理有限公司 11429 | 代理人: | 陈立新 |
地址: | 410073 湖*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种单状态变量和两级Kalman滤波器时间尺度算法,其中一种单状态变量Kalman滤波器时间尺度算法,包括以下步骤,首先建立原子钟模型;计算每台钟的过冲状态噪声方差;获取N‑1组观测钟差;用Kalman滤波器通过N‑1组观测钟差估计出N台钟的状态;计算时间尺度的权重和预测值;最后引入虚拟Kalman采样间隔,优化时间尺度TA。在该方法的基础上,本发明还提供了一种两级Kalman滤波器时间尺度算法,通过第一级Kalman滤波器和重构时差,获得N‑1组重构时差,然后,运行第二级的Kalman滤波器生成时间尺度TA。本发明可以通过选取虚拟Kalman采样间隔,使时间尺度的频率稳定度在任意某一个指定的平滑时间达到最优。 | ||
搜索关键词: | 状态变量 两级 kalman 滤波器 时间 尺度 算法 | ||
【主权项】:
1.一种单状态变量Kalman滤波器时间尺度算法,其特征在于,包括以下步骤:S1建立原子钟模型
其中,X1(t)、X2(t)分别为观测钟差的两个状态变量;其中X1(t)代表瞬时时差,X2(t)代表不含频率白噪声的瞬时频差;x0和y0分别代表瞬时时差和瞬时频差的初值;d代表频漂;W1(t)和W2(t)分别代表两个独立的维纳过程,并且有W(t)~N(0,t),即每个维纳过程服从均值为0,方差为时间t的正态分布;σ1和σ2分别是这两个维纳过程的扩散系数,用于表明噪声的强度;扩散系数与Allan方差的关系表示为:
其中,
代表平滑时间为τ时的Allan方差,τ为平滑时间;S2计算每台钟的过冲状态噪声方差钟组的状态方程为:X(k+1)=φ·X(k)+J(k) (3)其中,X(k)=[x1(k),x2(k),…,xN(k)]T是钟组在k时刻的时差;xi(k)(i=1,2,…,N)是钟组中第i台钟的时差;
是状态转移矩阵;J(k)是钟组的过程噪声,表示为J(k)=[J1(k),J2(k),…,JN(k)]T,其中Ji(k)(i=1,2,…,N)是钟组中第i台钟的过程噪声;由式(1),Ji(k)(i=1,2,…,N)可以表示为:
第i台钟的过程状态噪声方差即为式(4)的方差,表示为:
其中,T为采样间隔;由式(5)和式(2),得到:
其中,
表示第i台钟的Allan方差;于是,钟组的过程噪声方差表示为:
S3获取输入量即N‑1组观测钟差钟组的观测方程为Z(k)=H·X(k)+V(k) (8)其中,H表示为:
V是测量噪声,表示为V(k)=[v1(k),v2(k),…,vN‑1(k)]T,其中vi(k)(i=1,2,…,N‑1)是V中每一组钟差的观测噪声,它们之间相互独立;vi(k)的噪声协方差为Ri,所以钟组的测量噪声V的协方差表示为:
由式(8)和式(9),观测钟差可以表示为:Z(k)=[x1(k)‑x2(k)+v1(k)…x1(k)‑xN(k)+vN‑1(k)]T (11)其中的每一个量代表在k时刻第1台钟与第i台钟(i≠1)之间的钟差;S4使用Kalman滤波器通过N‑1组观测钟差估计出N台钟的状态![]()
Kk=Pk,k‑1·HT(H·Pk,k‑1·HT+R)‑1 (14)
Pk,k=(I‑Kk·H)·Pk,k‑1 (16)其中:
代表了钟组在k‑1时刻的时差的估计值、
代表了钟组在k‑1时刻对k时刻的时差的预测值、Pk‑1,k‑1是钟组时差的估计误差矩阵、Pk,k‑1是钟组时差的预测误差矩阵、Kk是Kalman滤波器增益;通过式(12)至至式(16)五个方程得到![]()
是第i台钟相对于时间尺度TA的时差的估计值;S5计算时间尺度的权重和预测值将式(12)代入式(15),得到:
式(17)可以写成如下形式:
其中:K11(k)表示Kk矩阵的第1行第1列的元素;K12(k)表示Kk矩阵的第1行第2列的元素;依次类推,KN(N‑1)(k)表示Kk矩阵的第N行第N‑1列的元素;将每台钟相对于时间尺度TA的时间差减去其时差的估计值得到即为校准钟,由式(18)得到第1台校准钟表示为:
当观测噪声为零时,式(19)满足时间尺度基本方程,即:
其中,时间尺度的权重表示为:
时间尺度的预测值表示为:
当测量噪声为零时,由式(18),任何一台“校准钟”都满足时间尺度基本方程,即:
由式(18),当i≠1时,时间尺度的权重表示为:
其中:Kij(k)表示Kk矩阵的第i行第j列的元素;而时间尺度的预测值的表达式与式(22)相同。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军国防科学技术大学,未经中国人民解放军国防科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610386951.6/,转载请声明来源钻瓜专利网。